单层石墨烯(SLG)(Novoselov等,2004)可以使用显微镜(如果放置在Si+SiO 2厚度100 nm或300 nm上)(Casiraghi等,2007a)。SIO 2层充当光的腔,并根据其厚度导致建设性或破坏性干扰(Casiraghi等,2007a)。图1显示了计算出的光学对比度作为激光波长和SIO 2厚度的函数,对比度最大值在100和300 nm厚度,对于450至600 nm之间的常用激光波长。虽然通过光学对比进行成像可以使其厚度有一个了解,但它不足以获取更多的定量信息,例如掺杂,混乱,应变等。拉曼光谱镜通常是一种强大的特征技术,通常是碳,范围从富勒烯,纳米管,石墨碳到无定形和类似钻石的碳(Ferrari and Robertson,2000; Tuinsstra and Koenig and Koenig,1970; 1970; Fresselhaus et al。在石墨烯中,拉曼光谱现在可以通常用于提取层n的层数,以估计掺杂和应变的类型和数量,以及检查石墨烯的质量,因为这种光谱技术对缺陷也很敏感(Ferrari和Basko,2013年)。
我们展示了单层和少层石墨烯薄片的拉曼光谱测量结果。我们使用扫描共焦方法收集具有空间分辨率的光谱数据,这样我们就可以直接将拉曼图像与扫描力显微照片进行比较。单层石墨烯可以通过 D' 线的宽度与双层和少层石墨烯区分开来:单层石墨烯的单个峰分裂为双层的不同峰。这些发现是使用基于电子结构和声子色散的从头计算的双共振拉曼模型来解释的。我们研究了 D 线强度,发现薄片内没有缺陷。源自边缘的有限 D 线响应可以归因于缺陷或平移对称性的破坏。
在经受相干声子驱动器的铜材料材料中据报道了光诱导的超导性的签名。从瞬态terahertz电导率中提取了“冷”超流体,并被认为与“热”未经节制的准粒子共存,这是一个驱动触发性系统的标志,在该系统中,相干和不相互反应之间的相互作用尚未得到充分了解。在这里,使用时间分辨的自发拉曼散射来探测YBA 2 Cu 3 O 6的光诱导的超导状态的晶格温度。48。通过测量未发动的“观众”声子模式的时间依赖性拉曼散射强度,观察到晶格温度的升高高达140 K。该值与在相同激发条件下测得的准粒子温度估计升高一致。这些温度变化提供了有关驱动状态及其衰减性质的定量信息,并可能提出一种优化这种效果的策略。
散射(基于SER)的传感器在敏感性,效率和便携性方面提供了许多传统传感器的优势。等离子底物以高度开发的纳米结构金属的形式形式显示,已显示出对拉曼散射信号的显着增强(最多10 7次)的显着性增强(有机/生物/生物有机分子,底层质量,且无机的晶体 - 晶体质体nano-scressor nanano-nanano-nanano-nanano-nanano-nanano crenivers nanano corneminity the semogange cants cants s lms。 (LSPR)。13 - 15使用纳米光刻的金属纳米簇阵列组成的等离子底物的制造允许研究谐振效应,以增强对位于不同大小的金属纳米粉丝的分析物的增强。15用于等离子材料,金和银主要使用。第一个是一种惰性材料,在正常条件下不进行化学反应,但可以提供足够的等离激元增强。第二个,尽管是反应性的,但具有介电功能的高度假想部分,因此具有强大的等离子增强功能。两种材料都广泛用于可见光谱范围内的SER和TERS实验。石墨烯用于创建此类传感器,原因有几个。首先,由于石墨烯是导体,因此可以激发自己的等离子体,从而激发
拉曼光谱法(RS)是一种众所周知的技术,它广泛用于物理化学,材料物理,生物学,工程甚至行星探索的广泛领域。rs已成为表征材料的化学成分和分子结构的主要工具之一。有关缺陷性质,材料的结晶或无定形特征以及该技术的大量信息。在本期中,原始论文和评论文章尤其有望表明RS在诸如以下主题中的兴趣: - 控制材料的制备,例如薄膜,纳米和微结构材料,以及提高其质量; - 掺入点缺陷的探测和缺陷结构的研究; - 与相变的联系(共存阶段,相变); - 属性的增强(机械,电子,光学等)通过更好地了解结构。此问题可以概述该重要工具在物理和化学不同领域中的各种应用。
纸上的真菌色素:链格孢属菌种的拉曼和量子化学研究。Victor V. Volkov 和 Carole C. Perry* 诺丁汉特伦特大学科学技术学院跨学科生物医学研究中心,克利夫顿巷,诺丁汉 NG11 8NS,英国。摘要为了加深对影响图书馆、博物馆和档案馆的文化遗产的真菌分子生物化学的了解,我们研究了拉曼光谱在识别纸上真菌有色发色团组成的诊断能力。在本研究中,我们探索了共振拉曼在区分高湿度下在纸上生长的真菌丝中的发色团的诊断能力,重点是表征链格孢属菌种的发色团。为了促进分子分析,我们对在紫外-可见光谱范围内具有光吸收的代表性代谢物进行了量子化学计算。通过理论与实验的比较,我们发现,在成熟的菌丝丝中存在 fonsecin、erythroglaucin 和 aurasperone 类型的发色团,而 β-胡萝卜素在纸面上的酵母沉积物中占主导地位。成熟丝的共振拉曼光谱表明,比 β-胡萝卜素更长的胡萝卜素对光谱特征的贡献更大。利用微观分辨率,我们在丝从酵母沉积物开始的空间区域中区分了丰富的拉曼特征集,这些特征集被归因于木质素、flavoglaucin、核黄素、cycloleucomelon(e) 和 asperyellone 分子成分。在这些区域中,丝的微结构刺激了成熟三维支架的发育,拉曼共振的多样性证实了发育结构具有丰富的生物化学性质。这里介绍的特征真菌发色团和代谢物的光学和光谱响应计算库对于理解真菌对各种纸制品(包括书籍、版画、素描、水彩画、雕刻甚至雕塑)的影响以及设计基于真菌菌丝垫的下一代材料至关重要。 关键词 拉曼、显微镜、真菌、纸、光学、密度泛函理论 引言 真菌界早期 [1] 的专业化归因于原真菌细胞在概念上依赖可渗透壁的生物学来提供快速分子运输和外部消化食物。后者在我们的生活中对真菌起着至关重要的作用:在工业和文化中。如果说系统地使用真菌作为生产剂的理念自直观的古代发酵以来一直发展缓慢,直到 19 世纪末设计出第一种草酸生产的药物化学方案 [2],那么,人们直到最近几十年才开始意识到真菌作为我们日常生活中的积极参与者,无论是作为病原体,还是作为共生体,或者作为一种冷漠竞争的生命力,只有在了解这些生物组成了自己的王国之后,我们才能理解它们之间的区别 [3]。真菌对人类文化有着巨大的影响,这里我们讨论的是保存在纸质文物中的遗产。纸是一种由纤维素纤维制成的片状材料。在过去的两千年里,纸张是日常使用中信息存储和传输的主要“载体”,取代了蜡和粘土板、桦树皮和皮革羊皮纸。作为一种由多糖链构成的吸湿性有机材料,纸可能是许多微生物的营养来源。真菌是导致纸张降解的主要菌群 [4 ]。它们是图书馆、档案馆和博物馆中书面和印刷遗产的主要威胁 [5 ]。各种曲霉菌、镰刀菌、木霉菌、漆霉和青霉菌都能在纸上有效生长,并引起纸张基质的化学改变。
摘要:由于薄膜内激发光和拉曼散射光的干扰,薄膜多层膜的拉曼信号强度随薄膜层厚度非单调变化。这一现象不仅可用于增强拉曼信号,还可用于研究薄膜厚度和光学特性。本文,我们对几种薄膜材料系统的拉曼信号厚度依赖性进行了实验研究,包括蓝宝石上硅 (SOS) 和 SOS 上的氮化硅薄膜,以及在硅基板上制备的多层 MoS 2。将适当缩放的测得强度与从传输矩阵法开发的分析模型进行比较。当激光光斑尺寸足够大于薄膜厚度时,SOS 薄膜具有很好的拟合效果。对于多层 MoS 2,发现来自底层 Si 基板的拉曼信号强度具有极好的拟合效果,而 MoS 2 特征拉曼位移的强度受激光参数和样品方向的影响。这些结果对薄膜计量和光学特性表征具有重要意义。
30肯定选择了Cho-M Cell Lines™,每种都会选择不同类型的重组蛋白。可行的细胞浓度(VCC)和细胞活力,以跟踪培养物的生长性能。然后,使用拉曼光谱法分析了每种培养的样品。与VI细胞BLU参考方法不同,与自动化液体处理系统相连的拉曼光谱设置消除了对消耗品(试剂)的需求,并允许进行全自动的采样和数据收集分析。
图4:TL 2 O/pts的电子带结构分别为(w/o)SOC和(b)具有(w/)soc的(b)。(c)缩放价带区域定义了发电的rashba-Energy e r和动量k 0。(d)对应于虚线的黑线(E = - 0。30 eV)在(c)中。