支持者说明心理战 (PO) 团,职业管理领域 (CMF) 37,由正规军 (RA) 组成部分 (COMPO) 1 和美国陆军预备役 (USAR) COMPO 3 组成,包括现役警卫预备役 (AGR)、士兵和士官 (NCO)。各组成部分的入伍、培训、教育、职业发展和任务支持差异很大。存在有限数量的非入伍陆军国民警卫队/美国陆军国民警卫队 (ARNG / ARNGUS) COMPO 2 授权/职位;然而,这些职位通常由 USAR COMPO 3 人员在组织动员或部署期间填补。1. 当前命名约定:心理战 (PO)。这用于指代 CMF 37 人员、部门、团和 PO 指挥层级(例如,心理作战大队 [POG]、心理作战营 [POB]、心理作战连 [POC]、区域 / 战术心理作战支队 [RPD / TPD]、区域 / 战术心理作战小组 [RPT / TPT]、专业心理作战小组 [SPT])。2. 先前仅适用于正规军的命名约定:军事信息支持 (MIS)。 2010 年至 2017 年期间,当提及执行军事信息支援行动 (MISO) 职能的 PO 指挥层级时,使用此名称(例如,军事信息支援组 [MISG]、军事信息支援特遣队 [MISTF]、军事信息支援营 [MISB]、区域 / 战术军事信息支援公司 [MISC]、区域 / 战术军事信息支援支队 [RMD / TMD]、区域 / 战术军事信息支援队 [RMT / TMT]、特别军事信息支援队 [SMT])。此命名约定不再使用。3. 参考:FM 3-53 军事信息支援行动。
摘要:神经调节的领域缺乏影响可塑性个体差异的预测指标,这些差异会影响对重复的经颅磁刺激(RTMS)的反应。连续的theta爆发刺激(CTB)是一种以其抑制作用而闻名的RTM的形式,显示了个体之间的可变反应,这可能是由于神经可塑性的差异所致。预测单个CTBS效应可以极大地增强其临床和实验效用。本研究探讨了在神经调节之前测量的电动机诱发电位(MEP)输入输出(IO)参数是否可以预测运动皮层对CTB的反应。IO曲线是通过记录在一系列单脉冲TMS强度上的MEP来从健康成年人中取样的,以获得包括MEP Max和S 50(中点强度)在内的参数。后来比较了刺激前后的Moto Cortex及其MEP的相同位置的CTB。MEP Max和S 50都预测了响应,与CTB后10、20和30分钟的个人MEP变化显着相关(P <0.05,R 2> 0.25)。此外,我们介绍并验证了一种易于实现的生物标志物,该标志物不需要全IO曲线的耗时抽样:MEP 130RMT(中位数为10 MEP,在130%RMT)。MEP 130RMT也是CTBS响应的强有力预测指标(P <0.005,r 2> 0.3)。与先前研究的RTMS响应(BDNF多态性)的遗传生物标志物的头对头比较表明,基于IO的预测因子在解释更多响应变异性方面具有出色的性能。关键字:输入输出曲线,CTB,预测变量因此,在CTBS给药之前得出的IO曲线可以可靠地预测CTB诱导的皮质兴奋性变化。这项工作指向RTMS诊断和治疗应用中调整刺激程序的无障碍策略,并可能提高对其他大脑刺激方法的反应率。
最近邻间距分布遵循一维泊松分布P(s)=e−s[7],而混沌系统则表现出能级排斥力,其P(s)根据其对称性类接近于随机矩阵理论(RMT)的维格纳猜测,当s较小时,P(s)∝sβ,其中对正交、酉和辛对称,β=1,2,4,这是著名的Bohigas-Giannoni-Schmit(BGS)猜想的内容[8]。BGS猜想现在在半经典理论中得到了很好的证实,适用于具有适当经典极限的系统[9-11],并得到许多不同量子系统中大量数值和实验证据的支持[12-14]。多体量子系统的情况则不太清楚,尽管最近取得了一些理论进展 [ 15 – 17 ] 。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常,BGS 猜想被认为对多体量子系统也成立,这主要基于数值结果,但仍缺乏严格的推导。可积和混沌通用极限之间的转变是非通用的,取决于所研究的特定系统的特性,尽管已针对不同系统进行了非常详细的探索 [ 18 , 19 ] 。例如,在可积与混沌正交情况之间的转变中,一些系统表现出分数能级排斥,P(s)∝sβ,β值在可积情况β=0与对应的RMT系综值β=1之间连续变化,而其他系统则表现出满能级排斥,但仅限于一部分能级[20]。许多系统,特别是多体情况,表现出前一种行为。然而,Berry和Robnik的半经典转变理论预测了后一种行为[19]。在这种情况下P(0)=F,其中F由所考虑模型的经典极限的相空间中规则轨道的分数给出。在开放量子系统中,该理论的发展要落后得多,即使第一批结果是在BGS猜想提出后不久就出现的[21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子随时间演化的特征。在马尔可夫近似下,刘维尔算子是线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22] 。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。该问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布符合得很好 [21] 。在混沌极限中,对于较小的s值,存在普遍的立方斥力P(s)∝s3,就像在非厄米随机矩阵的Ginibre系综中一样[23],尽管完整P(s)分布的细节取决于非厄米矩阵的对称性[24,25]。对于开放量子自旋链,从可积到混沌的转变中的能级间距分布可以通过具有谐波约束的静态二维库仑气体来拟合,其中能级斥力由温度的倒数给出,表现出转变中的分数能级斥力[26]。最近,由于发现了新的可积多体刘维尔粒子家族[27-29],人们需要采用不同的方法来研究开放量子系统的可积和混沌特性。扩展精确可解和量子可积的 Liouvil 函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌 Liouvil 函数复谱的统计特性 [ 30 , 31 ] 。然而,在物理多体 Liouvil 函数中,精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在本文中,我们将基于 SU(2) 自旋 1 Richardson 模型的文献 [ 28 ] 模型扩展到有理 Richardson-Gaudin (RG) 类可积模型中的可积线。这种新的可积 Liouvil 函数族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们
辛对称性,这是著名的Bohigas-Giannoni-Schmit (BGS)猜想的内容[8]。BGS猜想目前在半经典理论中已经得到充分证实,适用于具有适当经典极限的系统[9–11],并得到许多不同量子系统中大量数值和实验证据的支持[12–14]。多体量子系统中的情况尚不清楚,尽管最近取得了一些理论进展[15–17]。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常假设BGS猜想对多体量子系统也成立,这主要基于数值结果,但仍然缺乏严格的推导。可积通用极限与混沌通用极限之间的转变是非通用的,取决于所研究特定系统的特性,尽管已针对不同系统进行了非常详细的研究 [18,19]。例如,在可积和混沌正交情况之间的转变中,一些系统呈现分数能级排斥,P ( s ) ∝ s β,β 的值在可积情况β = 0 和相应的 RMT 集合值β = 1 之间连续变化,而其他系统呈现满能级排斥,但仅限于一部分能级 [20]。许多系统,特别是在多体情况下,都表现出前一种行为。然而,Berry 和 Robnik 的半经典转变理论预测了后一种行为 [19]。在这种情况下,P (0) = F,其中 F 由所考虑模型的经典极限在相空间中的规则轨道分数给出。在开放量子系统中,该理论的发展程度要低得多,即使第一批结果在 BGS 猜想提出后不久就出现了 [21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子的时间演化。在马尔可夫近似中,刘维尔算子是一个线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22]。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。解决这个问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布非常吻合 [21]。在混沌极限中,对于较小的 s 值,会出现普遍的立方排斥力 P ( s ) ∝ s 3,就像非厄米随机矩阵的 Ginibre 系综 [23] 中的情况一样,尽管完整的 P ( s ) 分布的细节取决于非厄米矩阵的对称性 [24, 25]。对于开放的量子自旋链,从可积到混沌转变过程中的能级间距分布已通过具有谐波约束的静态二维库仑气体拟合,其中能级排斥力由温度的倒数给出,表现出转变过程中的分数能级排斥力 [26]。最近,由于发现了新的可积多体刘维尔函数家族 [27–29],需要采用不同的方法来研究开放量子系统的可积和混沌性质。扩展精确可解和量子可积刘维尔函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌刘维尔函数复谱的统计特性 [30,31]。然而,物理多体刘维尔函数中精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在这封信中,我们将扩展参考文献中的模型。 [28] 基于 SU(2) 自旋 1 Richardson 模型,将其转换为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 家族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后,我们根据单个参数定义一个 Liouvillian,它在可积性和完全混沌极限之间进行插值。利用这些模型 Liouvillians,我们