随机神经网络 (RNN) 在许多不同领域都表现出色。训练参数较少和闭式解的优势使其在小数据集分析中广受欢迎。然而,在基于 EEG 的被动脑机接口 (pBCI) 分类任务中,使用 RNN 自动解码原始脑电图 (EEG) 数据仍然具有挑战性。具有高维 EEG 输入的模型可能会出现过度拟合,非平稳、高水平噪声和受试者变异性的固有特性可能会限制隐藏层中独特特征的生成。为了解决基于 EEG 的 pBCI 任务中的这些问题,本文提出了一种频谱集合深度随机向量功能链接 (SedRVFL) 网络,该网络专注于频域中的特征学习。具体而言,提出了一种无监督特征细化 (FR) 块来提高 RNN 中的低特征学习能力。此外,还执行动态直接链接 (DDL) 以进一步补充频率信息。所提出的模型已在自收集数据集和公共驾驶数据集上进行了评估。获得的跨受试者分类结果证明了其有效性。这项工作为EEG解码提供了一种新的解决方案,即使用优化的RNN来解码复杂的原始EEG数据并提高基于EEG的pBCI任务的分类性能。
大量工作表明,在行为过程中,神经种群表现出低维动力学。但是,有多种对低维神经种群活动进行建模的不同方法。一种方法涉及潜在的线性动力学系统(LDS)模型,其中通过具有线性动力学的低维潜在变量的投影来描述种群活动。第二种方法涉及低级别的复发性神经网络(RNN),其中人口活动直接来自过去活动的低维投影。尽管这两种建模方法具有很强的相似性,但它们在不同的情况下出现,并且倾向于具有不同的应用领域。在这里,我们检查了潜在LDS模型与线性低级别RNN之间的精确关系。什么时候可以将一种模型类转换为另一个模型类,反之亦然?我们表明,由于潜在LDS模型的非马尔可夫特性,潜在的LDS模型只能在特定限制情况下转换为RNN。相反,我们表明可以将lnns映射到LDS模型上,而潜在维度最多是RNN等级的两倍。我们结果的一个令人惊讶的结果是,部分观察到的RNN比仅由仅观察到的单位组成的RNN更好地代表了LDS模型。
随机数生成是许多应用程序的关键组成部分,包括加密,安全通信系统,模拟和概率算法。伪随机数生成器(PRNGS)和量子随机数生成器(QRNG)是两种主要类型的随机数生成器,QRNG由于其固有的不可预测性提供了更好的安全性[1]。但是,预测PRNG和QRNG序列仍然是评估其安全性和可靠性的重要任务。深度学习技术,例如卷积神经网络(CNN),长期记忆(LSTM)网络和RNN,已在各种时间序列预测任务中广泛使用[2]。在本文中提出了一个混合深度学习模型,该模型结合了CNN,LSTMS和RNN来预测PRNG和QRNG序列。该模型在包含PRNG和QRNG序列的数据集上进行了训练和评估。
本课程是机器学习的本科课程。ml是人工智能的子场。它可以帮助工程师构建自动化系统,从经验中学习。它可以帮助机器做出数据驱动的决策。例如,用于导航的Google地图使用路线网络,实时流量特征,旅行时间等。使用ML算法预测适合您的路径。ml是一个弱学科领域,根源在计算机科学和数学上。ml方法,最好使用概率和统计工具来理解其行为。通过整合数学原则,您将学会有效地应对机器学习挑战,并发展与专业数据科学家相似的深刻理解。根据最新的估计,每天创建3.28亿TB的数据。随着数据越来越多的数据,对数据分析的自动化方法的需求继续增长。本课程的目标是开发可以自动检测数据模式的方法,然后使用未覆盖的模式来预测未来感兴趣的结果。本课程将涵盖许多ML和Gen AI模型和算法,包括线性回归,多层神经网络,支持向量机,贝叶斯网络,Gaussian Mixture模型,聚类算法,生成的对抗性对抗(GANS),RNNS,RNNS和RENFORSSICTION学习技术。课程目标如下:实践经验,使您可以选择最佳模型并掌握对他们成功至关重要的基本实现细节。实用会话(编码任务)将涉及使用现实世界数据,从而通过各种ML技术提高您在调试和完善模型方面的熟练程度。
被称为糖尿病性视网膜病的进行性眼科疾病仍然是全球失明的主要原因。有效的治疗和预防视力丧失需要迅速而准确的DR检测。深刻的学习程序在临床图片检查中表现出了非凡的承诺,在本文中,我们提出了一个混合模型,该模型加入了卷积大脑组织(CNNS)和重复性脑组织(RNN)的质量,以进一步发展Dr Discovery精确性。拟议的跨界深度学习模型涉及三个主要阶段。首先要采取的前进性,以这种方式以这种方式来升级眼底图片的质量和差异化,以取决于该模型消除基本亮点的能力。之后,使用残留的CNN来从已经处理的图像中提取特征。残留的CNN在捕获各种级别的亮点方面是备用的,并且此阶段使模型能够成功从信息图片中获得歧视性元素。随后的阶段包括将RNN纳入模型。rnns非常适合分析医学图像中的顺序模式,因为它们非常适合处理顺序数据和捕获时间依赖性。由于RNN的包含,该模型从底底图像序列中提取时间信息的能力提高了其识别早期DR进展符号的能力。混合模型的体系结构促进了空间和时间信息的融合,从而实现了更全面,更准确的DR诊断。1。第三阶段和最后阶段围绕着表征任务,在该任务中,完全关联的大脑网络被用来破译过去阶段分开的亮点,并将图片订购为各种DR的严重程度。关键词:糖尿病性视网膜病,深度学习,混合模型,检测,视网膜图像。引言糖尿病性视网膜病(DR)是一种退化性眼部感染,是糖尿病的结果。对视网膜中血管的损害,眼睛背面的光敏组织是其独特的特征之一。每当未经处理的情况下,DR都会导致严重的视力不幸甚至视觉缺陷[1] [2]。非增殖性糖尿病性视网膜病(NPDR)和增殖性糖尿病性视网膜病(PDR)是糖尿病性视网膜病的两种基本类型[3] [4]。在NPDR的开始阶段,视网膜中的静脉虚弱,并开始溢出液体或血液。但是,PDR是一个更高级的阶段,其中视网膜的表面开始发芽新,
摘要 自适应门控在通过经典循环神经网络 (RNN) 进行时间数据处理中起着关键作用,因为它有助于保留预测未来所需的过去信息,从而提供一种保持时间扭曲变换不变性的机制。本文以量子 RNN (QRNN)(一种具有量子记忆的动态模型)为基础,介绍了一类新型的时间数据处理量子模型,该模型保持了 (经典) 输入输出序列的时间扭曲变换的不变性。该模型称为时间扭曲不变 QRNN (TWI-QRNN),它在 QRNN 中增强了一种量子-经典自适应门控机制,该机制通过经典循环模型选择是否在每个时间步骤中根据输入序列的过去样本应用参数化酉变换。TWI-QRNN 模型类源自第一原理,其成功实现时间扭曲变换的能力已在具有经典或量子动力学的示例上通过实验证明。
Manisha Mali博士,Shreyas Thombal,Akshay Gangurde,Sunil Sonu,Jahnvi More More Computer,Vishwakarma信息技术研究所,印度浦那 - 印度浦那 - 摘要 - 语音增强,语音处理的重要组成部分,言语处理的重要组成部分,减少噪音,降解,降解,降解,降解和扭曲,以提高综合性和明显的声音符号。 尽管他们已经为基础设定了基础,但常规方法(例如Wiener滤波和光谱减法)经常在复杂和刺激性的设置中受到限制。 机器学习的最新发展,尤其是深度学习,已通过提供更具弹性,适应能力的模型来完全改变了这一部门,这些模型可以处理广泛的噪音情况。 本综述研究着眼于改善语音的不同基于机器学习的方法,特别着重于包括经常性和卷积神经网络(RNN)在内的神经网络。 本研究涵盖了他们的结构,优化策略和优于常规方法的卓越性能。 它还解决了资源有限,模型复杂性和实时处理的设备上计算效率的困难。 这项研究还提出了将未来的探究范围进行整合,用于整合强化学习,无监督的学习和混合模型,以在苛刻的环境中提高绩效。 关键字 - 经常性神经网络(RNN),深度学习,降低噪音,实时处理,资源约束设备1。 语音增强引起了很多关注,因为它在语音激活的设备,助听器,电信等中的应用等。Manisha Mali博士,Shreyas Thombal,Akshay Gangurde,Sunil Sonu,Jahnvi More More Computer,Vishwakarma信息技术研究所,印度浦那 - 印度浦那 - 摘要 - 语音增强,语音处理的重要组成部分,言语处理的重要组成部分,减少噪音,降解,降解,降解,降解和扭曲,以提高综合性和明显的声音符号。尽管他们已经为基础设定了基础,但常规方法(例如Wiener滤波和光谱减法)经常在复杂和刺激性的设置中受到限制。机器学习的最新发展,尤其是深度学习,已通过提供更具弹性,适应能力的模型来完全改变了这一部门,这些模型可以处理广泛的噪音情况。本综述研究着眼于改善语音的不同基于机器学习的方法,特别着重于包括经常性和卷积神经网络(RNN)在内的神经网络。本研究涵盖了他们的结构,优化策略和优于常规方法的卓越性能。它还解决了资源有限,模型复杂性和实时处理的设备上计算效率的困难。这项研究还提出了将未来的探究范围进行整合,用于整合强化学习,无监督的学习和混合模型,以在苛刻的环境中提高绩效。关键字 - 经常性神经网络(RNN),深度学习,降低噪音,实时处理,资源约束设备1。语音增强引起了很多关注,因为它在语音激活的设备,助听器,电信等中的应用等。引言言语增强是通过人工智能的快速增长,尤其是机器学习而实现革命性进步的众多学科之一。其目标是在大声情况下提高语音信号的质量和清晰度。统计模型和信号处理技术是常规语音增强方法的基础[1]。但是,随着机器学习的发展,尤其是深度学习和复发性神经网络(RNN),语音增强的完成方式发生了巨大变化。由于机器学习模型,尤其是RNN可以在整个时间上保留上下文,因此它们尤其擅长处理顺序输入,例如
监测人脑活动对于了解大脑功能、预防精神疾病和改善生活质量具有巨大潜力。为此,EEG 系统必须从当今临床实践中经常使用的有线、固定和笨重的系统转变为提供高信号质量的智能可穿戴、无线和舒适的生活方式解决方案。可穿戴设备上的连续监测要求自动 EEG 分类算法既准确又轻量。这是我们在本文中的主要关注点。请注意,可穿戴设备的处理器很小且有限,与台式机和服务器处理器相比要慢得多。许多以前的算法都是基于经典信号处理技术 [1][2]。由于 EEG 信号特征在不同情况下和不同人之间存在显著差异,因此此类算法中使用的固定特征不足以准确区分所有人的不同类型的疾病。为了自动提取特征并提高脑信号分类准确性,最近提出了基于深度学习的算法,包括深度卷积神经网络 (CNN) 和循环神经网络 (RNN) [3][4]。用于序列学习的最流行和最有效的 RNN 模型之一是长短期记忆 (LSTM) [5]。LSTM 旨在对长程依赖关系进行建模,而 RNN 的记忆备份起着重要作用,因此它们比传统的 RNN 更准确、更有效。本文重点介绍基于 LSTM 循环神经网络的 EEG 分类算法。所提出的方法采用 RNN,因为 EEG 波形自然适合用这种类型的神经网络进行处理。与其他类型的神经网络相比,RNN 可以更有效地捕获序列数据中的时间依赖关系。然而,高分类准确率的代价是
摘要。为循环神经网络 (RNN) 手工制作有效且高效的结构是一个困难、昂贵且耗时的过程。为了应对这一挑战,我们提出了一种基于蚁群优化 (ACO) 的新型神经进化算法,称为基于蚂蚁的神经拓扑搜索 (ANTS),用于直接优化 RNN 拓扑。该过程从多种现代循环细胞类型中进行选择,例如 ∆ -RNN、GRU、LSTM、MGU 和 UGRNN 细胞,以及可能跨越多个层和/或时间步骤的循环连接。为了引入鼓励形成更稀疏的突触连接模式的归纳偏差,我们研究了核心算法的几种变体。我们主要通过制定不同的函数来驱动底层信息素模拟过程(模仿标准机器学习中的 L1 和 L2 正则化)以及引入具有专门角色的蚂蚁代理(受真实蚁群运作方式的启发),即构建初始前馈结构的探索蚁和从前馈连接中选择节点以随后制作循环记忆结构的社会蚁。 我们还结合了社区智慧,其中最佳权重由蚁群共享以进行权重初始化,从而减少本地训练候选 RNN 所需的反向传播时期数,从而加快神经进化过程。 我们的结果表明,ANTS 进化的稀疏 RNN 明显优于由现代记忆细胞组成的传统一层和两层架构以及众所周知的 NEAT 算法。 此外,我们还改进了实验中使用的时间序列数据集的先前最新结果。
在本文中,我们使用复发性神经网络(RNN),该神经网络(RNN)结合了多个门控复发单元(GRUS),长期短期记忆(LSTM)和Adam Optimizer来开发用于心脏病预测的新的混合学习模型。该提出的模型的出色精度为98.6876%。该提出的模型是GRU和RNNS模型的混合体。该模型是在Python 3.7中开发的,通过整合与Keras和Tensorflow一起工作的多个GRU和RNN作为深度学习过程的后端,并得到各种Python库的支持。使用RNN的最新模型可实现98.23%的精度,而深神经网络(DNN)的精度达到了98.5%。由于神经网络的复杂设计,在神经网络模型中具有冗余性的大量神经元以及克利夫兰不平衡的数据集,现有模型的常见缺点是准确性较差。实验,结果表明,使用RNN的拟议模型和几个具有合成少数族裔过采样技术(SMOTE)的GRU达到了最高水平的性能。完成了。这是他使用Cleveland数据集的RNN最准确的结果,并且显示出对患者心脏病的早期预测的希望。
