AMC 20-26 附录 1 术语表 ...................................................................................................... 403 AMC 20-26 附录 2 培训和机组人员资格问题 ........................................................................ 406 AMC 20-26 RNP 运行注意事项 ........................................................................ 412 AMC 20-26 附录 4 RNP 飞行技术误差评估的可接受方法 ............................................................................................................. 417 AMC 20-26 附录 5 飞行运行安全评估 ............................................................................................. 421 附录 6 AMC 20-26/PBN 手册/AC90-101 比较 ............................................................................. 424
与传统转化方式相比,包含预组装的Cas9蛋白和sgRNA的RNP复合物已在动物、植物、人类细胞和微藻等各种宿主中实现了高效的基因组编辑(DiNapoli等,2020;Xing等,2014;Kim等,2014;Liang等,2019)。由于不需要密码子优化或特定启动子,RNP递送可方便、快速地应用于不同物种。此外,由于Cas蛋白在细胞内被内源性蛋白酶降解,RNP可以减少脱靶效应和嵌合现象,对细胞的细胞毒性较小(Nomura等,2019)。同时,由于不存在外来DNA序列,基因编辑的动植物可以免受转基因监管(Kanchiswamy等,2015)。因此,
► GFP 表达是选择电穿孔条件的常用工具。选择电穿孔条件时使用的有效载荷是相关的。转染 RNP 或 GFP-mRNA 时细胞活力相当 (A);然而,转染效率根据使用的有效载荷而不同,GFP-mRNA 转染在更广泛的电穿孔参数中较高,而 RNP 效率与施加的电压相关 (B)。
CRISPR 衍生的生物技术彻底改变了基因工程领域,并已广泛应用于基础植物研究和作物改良。常用的农杆菌或粒子轰击介导的转化方法用于传递质粒编码的 CRISPR 试剂,可导致外源重组 DNA 的整合和潜在的脱靶诱变。编辑效率也高度依赖于表达盒及其基因组插入位点的设计。使用 CRISPR 核糖核蛋白 (RNP) 进行基因工程已成为一种有吸引力的方法,具有许多优势:无 DNA/转基因编辑、最小的脱靶效应、由于 RNP 快速降解而降低毒性以及能够在保持高编辑效率的同时滴定其剂量。尽管 RNP 介导的基因工程已在许多植物物种中得到证实,但其编辑效率仍然不高,并且由于植物再生和选择的困难,其在许多物种中的应用受到限制。在这篇综述中,我们总结了 RNP 介导的植物基因工程的当前发展和挑战,并提供了未来的研究方向,以扩大该技术的使用。
核糖核蛋白 (RNP) 复合物介导的碱基编辑与质粒或病毒载体介导的基因编辑相比,由于其脱靶效应减少,预计会带来极大益处,尤其是在治疗应用中。然而,在细菌系统中生产产量充足、纯度高的重组胞嘧啶碱基编辑器 (CBE) 或腺嘌呤碱基编辑器 (ABE) 具有挑战性。在这里,我们从人类细胞表达系统中获得了高度纯化的 CBE/ABE 蛋白,并表明与质粒编码的 CBE/ABE 相比,CBE/ABE RNP 表现出不同的编辑模式(即多个碱基到单个碱基的转化率更低),这主要是因为 RNP 在细胞中的寿命有限。此外,我们发现与质粒编码的 ABE 相比,ABE RNP 在 DNA 和 RNA 中的脱靶效应都大大降低。我们最终将 NG PAM 靶向 ABE RNPs 应用于视网膜变性 12 (rd12) 模型小鼠的体内基因校正。
如果能够可靠地生产有效的 RNP-LNP 复合物,则脂质纳米颗粒 (LNP) 递送成簇的规律间隔的短回文重复 (CRISPR) 核糖核蛋白 (RNP) 可以实现高效、低毒和可扩展的体内基因组编辑。在这里,我们从嗜热地芽孢杆菌 (GeoCas9) 中设计了一种耐热的 Cas9,以生成 iGeoCas9 变体,与天然 GeoCas9 酶相比,该变体能够对细胞和器官进行 100 倍以上的基因组编辑。此外,iGeoCas9 RNP-LNP 复合物可编辑多种细胞类型,并在接受共同递送的单链 DNA 模板的细胞中诱导同源性定向修复。使用组织选择性 LNP 制剂,我们观察到在接受单次静脉注射 iGeoCas9 RNP-LNP 的报告小鼠的肝脏和肺中基因组编辑水平为 16 œ 37%。此外,与可生物降解的 LNP 复合的 iGeoCas9 RNP 可以编辑肺组织中致病的 SFTPC 基因,平均效率为 19%,这比之前使用病毒或非病毒递送策略观察到的基因组编辑水平有了很大的提高。这些结果表明,热稳定性 Cas9 RNP-LNP 复合物可以扩大基因组编辑的治疗潜力。
识别靶DNA,然后利用内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3已经通过使用CRISPR/Cas9 DNA(可以编码Cas9的质粒DNA和病毒基因组)、mRNA或蛋白质获得了成功的基因编辑活动。4,5通常,直接递送Cas9/sgRNA RNP复合物是近年来最广泛的方法,因为它具有速度快、基因编辑效率高、离靶效应低和免疫反应低等优点。6然而,尽管基于RNP的治疗方法具有诸多优势,但仍存在一些挑战。目前,物理方法(电穿孔、显微注射等)和病毒载体(腺病毒、腺相关病毒等)仍然是主要的递送策略。 7,8 尽管已报道了一些非病毒纳米载体(如 DNA 纳米线、9 阳离子脂质或聚合物 10 和黑磷 11)用于 RNP 递送,但它们仍然难以在体外和体内实现有效的基因编辑。一般来说,有三个递送问题需要考虑。首先,CRISPR/Cas9 RNP 尺寸较大,表面带电较多,难以浓缩成小尺寸或封装。12
相比其他递送方法,在体内和体外递送 CRISPR 核糖核蛋白 (RNP) 用于基因组编辑具有重要优势,包括减少脱靶和免疫原性效应。然而,由于效率低和细胞毒性,在某些细胞类型中有效递送 RNP 仍然具有挑战性。为了解决这些问题,我们设计了可自我递送的 RNP,它们可以促进有效的细胞摄取并进行强大的基因组编辑,而无需辅助材料或生物分子。与 CRISPR-Cas9 蛋白融合的细胞穿透肽 (CPP) 的筛选鉴定出能够有效编辑神经祖细胞基因组的有效构建体。对这些融合蛋白的进一步设计建立了 C 端 Cas9 融合,融合物为三个拷贝的 A22p,A22p 是一种源自人类 semaphorin-3a 的肽,与其他构建体相比,其编辑效率显着提高。我们发现,当直接注射到小鼠纹状体中时,可自我递送的 Cas9 RNP 可在临床相关基因中产生强大的基因组编辑。总体而言,可自我递送的 Cas9 蛋白为体外和体内基因组编辑提供了一个简便有效的平台。
马铃薯 ( Solanum tuberosum ) 是一种高度多样化的四倍体作物。优良品种杂合性极强,品种内和品种间短片段多态性 (indel) 和单核苷酸多态性 (SNP) 的发生率很高,在 CRISPR/Cas 基因编辑策略和设计中必须考虑这些因素才能获得成功的基因编辑。在本研究中,对马铃薯品种 Saturna 和 Wotan 中葡聚糖水双激酶 (GWD)1 和抗霜霉病 6 (DMR6-1) 基因分别进行深入测序,结果显示与杂合二倍体 RH 基因组序列相比,四倍体与二倍体相比,存在 indel 和 1.3 – 2.8 的高 SNP 发生率。这使向导 RNA (gRNA) 和诊断性 PCR 设计变得复杂。细胞库(原生质体)水平的高编辑效率对于实现四倍体中的完全等位基因敲除以及减少下游繁琐而精细的植株再生至关重要。在这里,CRISPR/Cas 核糖核蛋白颗粒 (RNP) 通过聚乙二醇 (PEG) 介导的转化瞬时递送到原生质体中。对于 GWD1 和 DMR6-1 中的每一个,设计了 6 – 10 个 gRNA 来靶向包含两个基因的 5 ' 和 3 ' 端的区域。与包括多种生物体的其他研究类似,单个 RNP/gRNA 的编辑效率差异很大,并且一些产生了特定的插入/缺失模式。尽管与靶向 3′ 端相比,靶向 GWD1 5′ 端的 RNP 产生的编辑效率明显更高,但 DMR6-1 5′ 端和 3′ 端的编辑效率似乎有些相似。当仅靶向 GWD1 基因的 3′ 端时,同时用两个 RNP 靶向 5′ 端或 3′ 端(多路复用)对总体编辑产生了明显的正协同效应。与单个 RNP/gRNA 转化中获得的编辑效率相比,位于不同染色体上的两个基因的多路复用对单个 RNP/gRNA 编辑效率没有影响或略有负面影响。这些初步发现可能会引发更大规模的研究,以促进和优化植物的精准育种。
RNAV 和 RNP 系统的发展方式与传统的地面航线和程序类似。确定了特定的 RNAV 或 RNP 系统,并通过分析和飞行测试相结合的方式评估了其性能。对于国内运营,初始系统使用 VOR 和 DME 来估计其位置;对于远洋运营,则使用 INS。这些“新”系统得到了开发、评估和认证。空域和障碍物清除标准是根据现有设备的性能制定的;要求的规范是基于现有能力。在某些情况下,有必要确定可以在相关空域内运行的单个设备型号。此类规定性要求导致新 RNAV 和 RNP 系统能力的引入延迟,并增加了维持适当认证的成本。为了避免这种规定性的要求,本手册介绍了一种通过指定性能要求来定义装备要求的替代方法。这被称为基于性能的导航 (PBN)。