• Thirupathi P(质量保证工程师):拥有 6 年经验的工程师,精通 AS 和 ISO 质量标准。出厂质量保证工程师,RVB Shourlube Industries Private Ltd. 坎普尔。
在引言中,我们对发现较高的材料的发现(SC)的发现进行了简短的历史调查,这些材料并非纯粹的状态。对于这种材料,在存在不同掺杂剂的情况下,向SC状态的过渡发生。最近在高压基材料中,SC在室临界温度下获得。在本文中,我们介绍了代表Infini-tum晶体的分离群集的计算结果,该簇是rh和pd作为掺杂剂的结果。所有计算均使用程序套件高斯16进行。使用高斯09.在嵌入式群集的情况下,应用了MP2电子相关水平的嵌入式聚类方法的方法。在NBO种群分析中揭示了两个主要特征:电荷密度转移从自旋密度转移的独立性,以及具有元素密度但没有旋转密度的轨道的存在。这类似于安德森(Anderson)的无旋转,并证实我们在先前出版物中的结论,即超导性的可能机制可以是安德森(Anderson)对高层callates高的T C超导性产生的RVB机制。
如何控制系统规模增大时复杂性的指数增长是量子多体系统理论的主要问题之一。过去二十年,量身定制的 Ansatz 类(如张量网络态)在数值计算 [ 1 – 4 ] 和分析工作 [ 5 , 6 ] 方面取得了巨大进展。这些成果包括基态性质 [ 7 – 9 ]、量子相分类 [ 10 , 11 ]、无序系统 [ 12 – 16 ]、开放量子多体系统的行为 [ 17 , 18 ]、临界系统 [ 19 ],以及与 AdS / CFT 对应相关的研究 [ 20 ]。此类张量网络方法的核心是通过应用局部线性运算从底层资源状态中获得一类感兴趣的物理状态,这可看作是应用随机局部运算和经典通信 [21]。对于矩阵积态 (MPS) 和投影纠缠对态 (PEPS),这些状态由最大纠缠态网络给出。对于某些应用,已经引入了其他张量网络结构,如树张量网络 [22, 23] 和多尺度重正化假设 (MERA) [24, 25],后者捕获了临界系统的基态属性。最近探索的另一种推广 MPS 和 PEPS 的途径允许除了 EPR 对之外的更一般的资源状态 [26-28]。它们基于在多个格点之间共享的多部分量子态,例如 GHZ 态 [27]。在本研究中,我们通过扩展底层资源状态或纠缠结构以及允许的操作类别,进一步推广了这种方法。更准确地说,我们允许单参数近似表示系列,它们可以以任意精度再现感兴趣的状态。我们展示了如何将这些近似表示转换为中等数量张量网络状态的线性叠加的精确表示。这种方法为某些类别的状态提供了更有效的张量网络表示,并产生了一种有效的算法来忠实地重建期望值。此外,我们获得的结果允许以普通 PEPS 的形式模拟或重新表达基于多部分资源状态的张量网络状态,从而能够通过针对 PEPS 的高度优化的方法对这些状态进行数值处理。作为一个具体的例子,我们表明,基于 [ 27 ] 中引入的 GHZ 态的二维方晶格上的半注入 PEPS 具有键维数 D ,可以表示为键维数为 2 D 的正常 PEPS。作为我们结果应用的一个例子,我们考虑共振价键 (RVB) 状态,最初被认为是自旋液体的基态 [ 29 ],在高温超导理论中也具有重要意义 [ 30 ]。RVB 态也在 PEPS 的背景下得到了广泛的研究 [ 31 – 33 ]。在 [ 31 ] 中引入了该状态的第一个张量网络表示,即键维数等于 3 的 PEPS。我们提出了两种新的状态表示:具有非均匀键维数的 PEPS