特点 ELECTRA VECTRAELITE 工艺宽度 2 英寸至 20 英寸(50 毫米至 508 毫米);2 英寸至 18 英寸(50 毫米至 460 毫米)2 英寸至 24 英寸(50 毫米至 609 毫米)可选 2 英寸至 20 英寸(50 毫米至 508 毫米)可选机器长度 150.5" (3823 mm) 122.7” (3117mm) 带外部助焊剂器的机器长度 175.5" (4458 mm) 154.5” (3925mm) 机器宽度 64.4" (1636 mm) 61” (1557mm) 机器高度 72" (1829 mm) 68” (1727mm) 助焊剂器 ServoJet SO ServoSpray N/AS 预热长度 6' (1.8 m) 带内部助焊剂器 4' (1.2 m) 带内部助焊剂器 最长 8' (2.4 m) 带外部助焊剂器 6' (1.8 m) 带外部助焊剂器 高速对流 (HVC) O OI/R 预热 OO Vectaheat S(2 个底部) S(2 个底部) 组合混合 OO 波浪旋转芯片 SO UltraFill SS ExactaWave OO 自动引线清除 SS 传送带自动宽度 SO 手指清洁器 SS
o 建立学术网络(目前超过 120 所学院和大学) o 赞助年度 Cyber RECon 学生研究会议 o 传播网络技术讲座 o 寻找驻地学者 o 提供高级领导参与以提高认识 o 提高对实习和网络职业的认识 o 提供客座讲座以支持对指挥专家的请求 o 加强理论与实践之间的联系: 了解网络空间和信息的性质 将连贯的逻辑应用于网络和信息操作
功率为 2.64 nW/Hz 1/2,在 0.3 THz 时超快响应时间为 2.5 μs。热介导的 CDW 跃迁允许对设备功能进行微调,在单一架构中集成传感、逻辑和内存。这种方法摆脱了传统的冯·诺依曼架构,通过局部的传感器内计算解决了能源效率和延迟瓶颈,从而实现了范式转变。此外,我们的研究结果深入了解了 CDW 系统中对称性破坏机制、量子相干性和非平衡动力学的相互作用,阐明了驱动设备性能的潜在物理原理。多场控制下电阻状态的长期保持和强大的相位稳定性证明了基于 CDW 的设备用于安全通信、加密处理和可编程光电逻辑的可行性。这些结果强调了 CDW 驱动的热电逻辑系统在推进太赫兹光电网络方面的变革潜力,同时拓宽了对凝聚态物理学中相关量子现象的理解。
刺激反应性水凝胶可以感知环境提示并相应地改变其体积,而无需其他传感器或执行器。这可以显着降低所得设备的大小和复杂性。但是,由于水凝胶的响应量变化通常是统一的,因此它们需要局部和随时间变化的机器人应用挑战。在此提出了使用可寻址和可调的水凝胶构建块(称为软素素执行器(SVA) - 具有可编程时空变形的均方根水凝胶结构。svas,利用快速反应速度和PNIPAAM的共溶性特性来生成高度相互连接的水凝胶孔结构,从而使可调的肿胀比,溶胀率和Young的模量在一个简单的,单性的铸造过程中与SVA合成sva sva-sva Uns.sva compatibles compatible compatible compatience compatience compatible compatible cossible。通过设计每个体素的位置和肿胀特性,并激活体素中的嵌入式焦耳加热器,可以实现时空变形,从而实现了可以使异构水凝胶结构操纵物体,避免障碍物,产生行进波和变形的形状。一起,这些创新为可调,不受限制和高度自由度的水凝胶机器人铺平了道路,这些机器人可以适应并应对非结构化环境中不断变化的条件。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
摘要 - 迄今为止的神经形态计算体系结构遭受了大规模神经处理所需的互连可伸缩性。我们提出了用于分层地址事件路由(多播 - 示威者)的高性能和低空的多播网络(NOC)体系结构,适用于适用于大规模重新确定的神经形态系统。此效率NOC体系结构的每个构建块由几个多铸高级高性能总线(MAHB)组成,并并行运行,用于高带宽核心间尖峰事件传输。此用于可扩展事件路由的体系结构可以帮助实施分布在神经形态处理核心内的脑尺度稀疏神经网络连接,具有典型的局部密集和全球稀疏神经元连接性的网络约束。使用Xilinx virtex ultrascale vu37p fpga进行演示,我们显示了8×8网格的MAHB在512MHz时钟以512MHz时钟的表现和2级核心间通信,最高带宽的最高带宽为420m,每秒每秒每秒128K Neuron Node node in horierarchy中的每秒。这个峰值绝对带宽支持在所有突触后目的地的最差情况下,在最差的情况下,以次数潜伏期为单位的峰值事件注册。索引术语 - 非形态计算,芯片上的多播网络,高级高性能总线(AHB),地址 - 事件代表(AER),可伸缩AER
摘要 - 可重新配置的智能表面(RIS)是一种可提高无线通道质量的潜在无线技术。RIS通常配备了被动元素,并为无线通信系统的覆盖范围提供了成本和功率良好的解决方案。没有任何射频(RF)链或计算资源,RIS需要从外部单元(例如基站(BS))发送控制信息。控制信息可以通过有线或无线通道传递,并且BS必须了解RIS和与RIS相关的通道条件,以有效地配置其行为。最近的作品引入了混合RIS结构,具有一些可以感知和数字化处理数据的活性元素。在这里,我们提出了一个完全自主的RI的操作,该操作在RIS和BS之间没有控制链接的情况下运行。使用一些感应元素,自主RIS基于强化学习采用了深Q网络(DQN),以提高网络的总和。我们的结果说明了在没有网络开销的无线网络中部署自动riss的潜力。索引术语 - 自主RIS,DQN,深度学习,Mu- miso,速率最大化,无线通信。
随着可再生能源的大规模开发,例如风能和太阳能,可再生能源的网格连接对电力系统的安全性和稳定性构成了一定的威胁,并且对分销网络的经济调度带来了巨大的挑战。传统和单一调度方法,例如负载需求响应或网络重新配置,无法满足分销网络安全和经济运作的需求。本文提出了一种经济调度方法,用于考虑网络重新构造的风力发电的分配网络,并建立了一个经济调度模型,其客观功能是最小化分配网络运营成本,重新配置成本和总系统网络损失。基于分销网络中能源存储和反应性电源补偿设备的最佳调度以及需求响应的全面利用,提出了一种与多目标协作优化的混合整数二阶锥体编程(MISOCP)方法。使用IEEEE33节点系统的测试结果验证了本文中提出的方法的可行性和适用性。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 4 月 8 日发布。;https://doi.org/10.1101/2020.04.06.027805 doi:bioRxiv preprint