模式分割的多路复用技术与几种模式ERBIUM掺杂纤维放大器(FM-EDFA)相结合,显示出解决标准单模光纤(SSMF)传输系统的容量限制的重要潜力。但是,在FM-EDFA中产生的差异模式增益(DMG)从根本上限制了其传输能力和长度。在此,提出了使用飞秒激光微加工来调整折射率(RI)的创新DMG均衡策略。可变模式依赖性衰减可以根据FM-EDFA的DMG曲线来实现,从而实现DMG均衡。为了验证提出的策略,研究了常用FM-EDFA配置的DMG均衡。模拟结果表明,通过优化飞秒激光尾区域的长度和RI调节深度,在3个线性偏振(LP)模式组中,最大DMG(DMG MAX)在10 dB中降低了10 dB,而平均DMG(dmg ave)的平均dmg(dmg ave)。最后,实验证明了一个2-LP模式DMG均衡器,导致DMG最大最大从2.09 dB减少到0.46 dB,并且在C频带上将DMG AVE从1.64 dB降低到0.26 db,仅插入插入率为1.8 db。此外,使用5.4 dB实现了最大可变DMG均衡范围,满足了最常用的2-LP模式扩增方案的要求。
我们建议使用基于光纤的干涉仪搜索标量超轻暗物质(UDM),其颗粒质量在10 - 17-17-10-10 - 13-11 eV = C2ð10-3-3 - 10 Hz。由固体芯和空心芯纤维组成,该提出的检测器将对纤维折射率的相对振荡敏感,这是由于标量UDM诱导的调节型在细胞结构常数α中的调制。我们预测,通过实施检测器阵列或低温冷却,提出的基于光纤的标量UDM搜索有可能达到参数空间的新区域。这种搜索特别适合探测暗物质的太阳光晕,其灵敏度超过了先前的暗物质搜索在粒子质量范围7×10-17-17-2×10-14 eV = C 2上。
由于仪器错误和软件限制,介电膜的折射率小于50 nm。在解决这个问题时,我们报告了椭圆测量Pro;可靠地评估折射率的可靠评估,以对沉积的各种热生长和化学蒸气,CVD,SI底物的介电膜,介电膜降低到约10 nm的厚度,并且我们在膜片界面界面上的当前了解的结果比较了结果。在所有研究的情况下,我们都发现界面区域在光学上与厚膜不同,并且精确的膜处理实质会改变界面区域的性质。-
便携式、经济高效的气体传感器在众多环境、生物医学和工业应用中越来越受欢迎,但目前的设备仅限于专门的实验室,无法扩展到一般用途。在这里,我们展示了一种光子芯片上灵敏度为十亿分之一的折射率气体传感器,该光子芯片基于用中孔二氧化硅顶包层功能化的氮化硅波导。通过监测集成不平衡马赫-曾德尔干涉仪的输出光谱模式来检测低浓度化学蒸气,该干涉仪的一个涂层臂暴露在气体蒸气中。我们分别对丙酮、异丙醇和乙醇获得了 65 ppb、247 ppb 和 1.6 ppb 的检测限。据我们所知,我们的片上折射率传感器基于光子集成电路提供了前所未有的低气体浓度检测限。因此,我们的研究结果预示着用于现场实时环境监测和医疗诊断的紧凑、便携和廉价设备的实现。
为了将以前未开发的电磁波谱部分用于丰富的复杂新服务(通信),需要在对流层中测量无线电折射率的微小变化。关于地球大气边界层(与大陆和海洋直接热接触和摩擦接触的空气)无线电折射率精细结构的高分辨率信息可用于许多应用,例如航天器跟踪、卫星导航、无线电干涉测量、遥感等。最新的发展使得我们能够通过现场和遥感技术在所有重要的空间和时间尺度上研究大气的这一区域。由于传统气象系统(如无线电探空仪、投投探空仪等)的内在缺陷,无线电折射率的大多数急剧梯度都被消除了。机载微波折射仪是一种非常精密的仪器,可以近乎实时地提供无线电折射率的精细结构信息数据。它的垂直高度分辨率约为一米或更低。它是唯一适合获取亚折射和超折射以及管道发生统计数据的仪器,可用于无线电和雷达操作的实时评估。该折射仪有助于了解热带边界层的微物理特性以及设计厘米波和毫米波无线电系统。该地区的物理特性是非平稳的,因为该地区的特点是存在温度和湿度逆变,这会导致无线电折射率以层的形式出现严重的不均匀性。这种高分辨率无线电气候信息在印度几乎不存在。为了收集此类信息,本文作者开发了一种机载微波折射仪(Sarma 等人,1975 年),并在后来几年考虑到工程和航空电子方面改进了设计,并于 1983 年、1985 年和 1988 年进行了飞行测试。
摘要:本文结合数值分析和实验验证,研究了基于氮化硅 (Si3N4) 平台的脊形波导的波长相关灵敏度。在第一部分中,详细分析了 Si3N4 脊形波导的模式特性,重点分析了有效折射率 (neff)、衰减场比 (EFR) 和传播损耗 (αprop)。这些参数对于理解引导光与周围介质的相互作用以及优化用于传感应用的波导设计至关重要。在第二部分中,通过实验证明了基于 Si3N4 波导的赛道环谐振器 (RTRR) 的波长相关灵敏度。结果表明,随着波长从 1520 nm 移至 1600 nm,RTRR 的灵敏度明显提高,从 116.3 nm/RIU 上升到 143.3 nm/RIU。这一趋势为设备在较长波长下的增强性能提供了宝贵的见解,强调了其在需要在该光谱范围内高灵敏度的应用方面的潜力。
改进成像质量有可能可视化以前看不见的大脑构建基块,因此是神经科学的巨大挑战之一。近年来,新的组织清除技术的快速开发试图解决厚脑样品中的成像折衷,尤其是对于高分辨率光学显微镜,清除介质需要与客观沉浸式介质的高折射率相匹配。这些问题在昆虫组织中加剧了,其中许多(最初充满了空气的)气管管在整个大脑中分支在整个大脑中分支会增加光的散射。迄今为止,很少有研究系统地从系统地量化了使用客观透明度和组织收缩测量值的清除方法的好处。In this study we compare a traditional and widely used insect clearing medium, methyl salicylate combined with permanent mounting in Permount (“MS/P”) with several more recently applied clearing media that offer tunable refractive index ( n ): 2,2 ′ -thiodiethanol (TDE), “SeeDB2” (in variants SeeDB2S and SeeDB2G matched to oil and glycerol immersion, n分别= 1.52和1.47)和Rapiclear(也有n = 1.52和1.47)。,我们通过将新鲜解剖的大脑与二翼型链的清除大脑进行比较,在有或不添加真空或乙醇预处理(脱水和再含水)中,以撤离气管系统的空气,测量了透明度和组织收缩。结果表明,乙醇预处理对于提高透明度非常有效,无论随后的清除介质如何,而真空处理几乎没有可测量的好处。乙醇预处理的Seedb2g和Rapiclear大脑的收缩率要比使用传统的MS/P方法少得多。此外,在较低的折射率下,与TDE和MS/p相比,这些最近开发的媒体更接近甘油浸入的指数,具有出色的透明度。繁琐的速度较小,但两者都提供了足够的透明度和折射率可调节性,可允许大型昆虫的全山大脑中局部体积的超分辨率成像,甚至是光片显微镜。尽管雷管储存的样品的长期永久性仍有待确定,但在室温下,我们的样品仍显示出良好的储存后荧光保存超过一年。
摘要 - 含有复杂几何结构(例如纹理,光子晶体和等离子体)的太阳能电池越来越流行,但是当通过昂贵的全波仿真设计这些设备时,这种复杂性也会增加计算需求。通过将这些复杂的几何形状建模为均匀的平板可以大大加快这些计算的速度。为此,我们引入了一种简单而坚固的方法,以解决超材料均质化中的分支问题。我们从尼科尔森 - 韦尔方法中的复杂对数分支开始,在低频范围内,最小绝对平均衍生物并强制执行连续性。之后是比较原始和均质板的反射率,透射率和吸收性。我们使用我们的方法来证明对图案化的PBS胶体量子点太阳能细胞膜的准确和快速的光学模拟。我们还比较了通过等效模型(波长尺度特征)和有效模型(子波长尺度尺度特征)均质的模式太阳能电池,发现对于后者几乎是一致的,而前者由于同质性假设的非物质性质而造成的较小错误。此方法可以大大降低计算成本,从而促进用于太阳能电池应用的光学结构的设计。
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
本文介绍了使用激光微机械侧孔光纤(S-H)的基于强度的折射率(RI)传感器。为了实现这一目标,将微腔切成S-H的侧面表面,从而可以进入其结构内的一个空气孔。然后将几何修饰的纤维在两端连接到单模纤维,以在包含超脑激光器和光学信号分析仪的系统中进行结构研究。在下一步中,将浸入液施加到微型腔内的RI值,范围为1.30至1.57,增量为0.02。功率损失测量。基于获得的结果,可以得出结论,RI传感器已成功地开发了生物化学中的潜在应用。