不同基因组片段的差异性积累是具有节段基因组的病毒的共同特征。宿主内基因组片段积累的可重复和特定模式被称为“基因组公式”。有人推测和一些实验支持基因组公式通过拷贝数变异调节基因表达发挥功能性作用。然而,基因组公式调控机制尚未确定。在本研究中,我们调查了八分体纳米病毒蚕豆坏死矮化病毒 (FBNSV) 的基因组公式是否由作用于单个片段而不是病毒种群水平的过程调控。我们使用叶片渗透系统来表明 FBNSV 的两个积累最多的基因组片段在蚕豆组织中比其他片段具有更大的内在积累能力。然而,作用于单个片段水平的过程不足以产生基因组公式,这表明涉及作用于超片段水平的其他机制。事实上,在系统性感染过程中,具有重要功能的片段的缺失会极大地改变其他片段的相对频率,这表明基因组公式是片段组的一个属性。总之,这些结果表明,FBNSV 基因组公式是由一个复杂的过程形成的,该过程在单个片段和片段组水平上起作用。
每种 RNA 的水平取决于其产生率和衰变率之间的平衡。尽管先前的研究已经测量了组织培养和单细胞生物中整个基因组的 RNA 衰变,但很少有实验是在完整的复杂组织和器官中进行的。因此,尚不清楚在培养细胞中发现的 RNA 衰变决定因素是否在完整组织中保留,以及它们在邻近细胞类型之间是否不同以及在发育过程中是否受到调节。为了解决这些问题,我们通过使用 4-硫尿苷对整个培养的果蝇幼虫大脑进行代谢标记,测量了全基因组的 RNA 合成和衰变率。我们的分析表明,衰变率范围超过 100 倍,并且 RNA 稳定性与基因功能有关,编码转录因子的 mRNA 比参与核心代谢功能的 mRNA 稳定性低得多。令人惊讶的是,在转录因子 mRNA 中,更广泛使用的转录因子与在发育过程中仅短暂表达的转录因子之间存在明显的界限。编码瞬时转录因子的 mRNA 是大脑中最不稳定的。这些 mRNA 的特点是大多数细胞类型中的表观遗传沉默,如其富含组蛋白修饰 H3K27me3 所示。我们的数据表明存在针对这些瞬时表达的转录因子的 mRNA 不稳定机制,从而可以快速高精度地调节它们的水平。我们的研究还展示了一种测量完整器官或组织中 mRNA 转录和衰减率的通用方法,为了解 mRNA 稳定性在调节复杂发育程序中的作用提供了见解。
CRISPR-Cas9 已为广泛应用的基因编辑带来了巨大进步。为了进一步发挥 Cas9 的效用,人们一直在努力实现对其核酸酶活性的时间控制。虽然不同的方法都侧重于调节哺乳动物细胞中的 CRISPR 干扰或编辑,但所有报道的方法都无法控制细菌中的核酸酶活性。在这里,我们开发了 RNA 接头,将茶碱和 3-甲基黄嘌呤 (3MX) 结合适体与 sgRNA 结合起来,从而实现大肠杆菌中的小分子依赖性编辑。这些可激活的向导 RNA 能够实现对体内基因编辑的时间和转录后控制。此外,它们还减少了因基因组切割而导致的宿主细胞死亡,这是 CRISPR 介导的细菌重组的主要限制。
摘要肌营养不良蛋白DP71是大脑中Duchenne肌肉营养不良(DMD)基因的主要产物,其在DMD患者和小鼠模型中的丧失会导致认知障碍。dp71表示为一系列蛋白质,该蛋白质是由外显子71至74和78的替代剪接产生的,该蛋白在主DP71D和DP71F组中分类为包含特定C端端的dp71d和DP71F组。但是,尚不清楚每个同工型在大脑发育的不同细胞类型,大脑区域和/或阶段中是否具有特定的作用。在本研究中,我们表征了胎儿(E10.5,E15.5)和产后(P1,P7,P14,P14,P21和P60)小鼠和大鼠脑发育期间DP71同工型的表达。我们通过RT-PCR和在全脑和不同大脑结构中的样品中的RT-PCR和克隆测定方法很好地量化了几个DP71转录本的表达。检测到以下DP71转录本:DP71D,DP71D ∆71,DP71D ∆74,DP71D ∆71,74,DP71D ∆71d ∆71-74,DP71F,DP71F,DP71F,DP71F,DP71F ∆71,DP71F ∆1F ∆1F ∆1FΔ74,dpp0071,71,71,71,71,71,007,71,00f ∆71,了Δ71-74。我们发现DP71F同工型是在E10.5(> 80%)中表达的主要转录物,而其表达则逐渐降低并被DP71D组的同工型从E15.5到产后和成年年龄所代替。第三代纳米孔测序证实了这一主要发现。此外,我们发现特定DP71同工型的表达水平随产后阶段和大脑结构的函数而变化。我们的结果表明,DP71同工型在胚胎和产后脑发育过程中具有不同的和互补的作用,很可能参与了不同细胞类型的各种成熟过程。
b)单细胞转录组分析显示了肠道的不同上皮细胞类型。左图显示了UMAP可视化,其中细胞根据其鉴定的细胞类型对颜色编码。插图图是UMAP簇的覆盖层,其箭头表示单元类型之间的谱系关系。右侧的小提琴图显示了在TCF7L2 WT/WT和TCF7L2 Flox/Flox小鼠之间比较的识别簇中关键谱系标记的差异表达;基因表达水平在y轴上指示。alpi,碱性磷酸酶,肠; ATOH1,Atonal BHLH转录因子1; defa5,防御5; Fabp1,脂肪酸结合蛋白1; GFRA3,GDNF家族受体alpha 3; LGR5,富含亮氨酸的重复G蛋白偶联受体5; MMP7,基质金属肽酶7; MKI67,扩散标记KI-67; MUC2,粘蛋白2; Neurog3,Neurogenin 3; OLFM4,橄榄毒素4; Reg4,重生家庭成员4; SPDEF,SAM指向包含ETS转录因子的域; Spink4,丝氨酸肽酶抑制剂Kazal 4型; TFF3,Trefoil因子3。
在本研究中,我们确定了两个新的超增强子相关基因:NSMCE2 和 MAL2,它们在乳腺肿瘤中高度上调,其高 RNA 水平与乳腺癌患者的不良预后有显著且明确的相关性。为了实现这一目标,我们利用了现有的数据集,其中包含在原发性乳腺肿瘤中确定的超增强子相关基因,以及包含乳腺癌患者的基因表达、基因组和临床结果的公共数据库。通过乳腺癌细胞中的体外药理学超增强子破坏试验,我们证实了超增强子参与了 NSMCE2 和 MAL2 转录本的上调,并通过生物信息学发现高水平的 NSMCE2 与化疗反应不佳密切相关。这在被诊断为侵袭性三阴性和 HER2 阳性肿瘤类型的患者中尤为明显。最后,我们表明,用化疗药物治疗乳腺癌细胞,同时通过超增强子阻断或直接沉默 NSMCE2 基因表达来降低 NSMCE2 基因表达,可以降低细胞活力,从而提高化疗的效果。我们的结果表明,调节新发现的超增强子相关基因 NSMCE2 的转录水平可以改善患者对标准化疗的反应,从而可能改善疾病结果。总之,通过挖掘现有的公共乳腺癌数据集,我们的工作表明,寻找超增强子调节基因及其与患者生存和治疗反应的关联,可能是识别肿瘤特异性(不是经常突变,而是超增强子失调的基因)特征的有效方法。我们的方法为识别预后不良的新生物标志物和改善癌症治疗的潜在药理学靶点提供了一种新途径。
美国是世界上抽水蓄能发电量第二大的国家,共有 43 座电厂,总装机容量为 21.9 吉瓦,估计储能容量为 553 吉瓦时,其中包括世界第二大电厂——位于弗吉尼亚州巴斯县的 3 吉瓦电厂。抽水蓄能发电厂大多建于 20 世纪 70 年代和 80 年代,作为核电的补充,是美国电网的“无声主力”,也是发电系统的支柱,确保了系统的可靠性,但其服务很少得到任何重大认可。但间歇性可再生能源、风能和太阳能的快速扩张,以及天气系统日益变化,极端事件频发,使人们认识到抽水蓄能的价值,并认识到未来需要更多的蓄能。
主任寄语 服务成本(公用事业费率制定)模型目前是州和联邦援助之外受监管公用事业的主要资金来源。该模型对于资助信息技术 (IT) 和运营技术 (OT) 现代化以提高效率、安全性、弹性和可靠性至关重要。然而,这种监管结构可能对希望在 IT 和 OT 方面进行大量投资以加速可再生能源、能源存储、运输和建筑电气化的整合以实现国家脱碳目标的电力公用事业提供商构成挑战。为了实现这些目标,IT 和 OT 现代化投资可能需要结合不同的融资模式、融资选择和/或联邦援助。传统的服务成本模式可能会面临客户和监管机构的反对,他们担心费率上涨。根据当地政策制定者的优先事项,IT 和 OT 现代化可能无法通过向客户收取的费率收回,或者可能不是优先事项。《基础设施投资和就业法案》(IIJA)为该部门提供了一个历史性机遇,可以提供有弹性、可靠、灵活、安全、可持续和负担得起的电力。为了保持这一势头,除了传统的服务成本模式之外,探索替代融资模式和融资方案以加速 IT 和 OT 现代化至关重要。这将使电力公用事业供应商能够更快地整合可再生能源、能源存储、运输和建筑电气化,以实现国家的脱碳目标。根据法定要求,本报告将提供给以下国会议员:• 尊敬的 Kay Granger
此外,特别委员会的监督责任已从涉及INR1千万千瓦及以上的欺诈限制到整个欺诈池的限制。因此,独立董事在欺诈风险审查和管理中的作用有所增加。这符合国家财务报告局(NFRA)和印度证券交易委员会(SEBI)如何对实体治理的独立董事社区赋予更大的责任(这与独立董事在公司治理中所发挥的重要作用在公司治理中所扮演的重要作用,例如审查关联方交易,以及欺诈管理和欺诈管理)。
FNBP1 PPFIA2 CPEB4A MEAF6 TRAPPC13 PTPPRUB KCNMA1A MED23 PLECA DIP2A ADGRL2A-1 EPRS1 MEF2CA TENM4-1 Pus7 TRRAP CAMTA1A NCKAP1A ADGRL2A-2 CNPRAK1G1 Mon2 VIKIAAK1AAK1AA ADGRL2B CLEC16A NRXN1A FRYA GPC6A EIF4G3B AP1G1 CLASP2 PTPRFA CASKA CASKA PTPRD-2 SYNJ1-2 PTK2AB-2 SCYL2 SCYL2 SCYL2 DOCK4B PPP6R3 ABIFFFFL3 ABIFFFFL L1CAMA PTPRUA TENM2 KCNQ5A NRG1 SUCO PTPRK PTK2AB-1 DOP1A TTC28 ERGIC3 DIP2CB DOCK4 CACN3B DCTN4 SGIP1B FRYB MAPK8IP3 SPTAN1 KIF1B RAPGEF2 CPEGGEF2 CPEF2 CPEBB4B NRG2B CAMTA1B NRG2A PPFIA4