All-inclusive RNA-seq (including quality control, library prep, sequencing, and initial bioinformatics) per unit Stranded mRNA-seq (poly-A enrichment or low-input), 24 samples per NovaSeq SP 1/2 flow cell 2x50bp (paired-end) 1 sample € 235 Stranded mRNA-seq (poly-A enrichment or low-input), 12 samples per NovaSeq SP 1/2流细胞2x50bp(配对 - 末端)1样品€327已链的mRNA-SEQ(Poly-A富集或低输入),每个Novaseq SP 1/2 sp 1/2流量细胞2x50bp(配对 - 端)1样品1样品€511总RNA-seq(RNA-seq)(ribo-Zere depletion)24 SPPLES,24 SPX 50 spplays 2 250 (配对末端)1样品样本274欧元的总RNA-seq(Ribo-Zero Deptetion),每个Novaseq SP 1/2流量单元2x50bp(配对 - 端)的12个样本366欧元366欧元€366欧元的mRNA-SEQ(Poly-a富集,低输入,或ribo-Zera sampe sampe sampe sampe sampe sampe sampe sampe sampe sampe smece-rectract) (“ QuantSeq”),每个Novaseq SP流单元1x100bp(单端)96个样本€6 409
在 DARPA 担任项目经理期间,他领导了一系列专门从事先进材料和制造的项目,其中包括可定制原料和成型、平台材料开发和开放式制造项目。这些项目使新制造技术的认证和新先进材料的开发成为可能。在加入 DARPA 之前,Maher 先生曾在 ARL 担任复合和混合材料分部负责人和材料应用分部负责人。在 ARL 任职期间,他负责监督先进材料的研究和开发项目。最近,他担任美国应用科学技术研究组织 (ASTRO) 的首席技术官和联合创始人,该研究机构倡导采用增材/先进制造。在他职业生涯的早期,他在马丁·玛丽埃塔、AAI 和杜邦公司担任过各种技术和管理职位,时间长达 20 年。他获得过无数奖项,包括材料与过程工程促进学会 (SAMPE) 会员、国防部长卓越奖、100 项最伟大陆军发明奖和制造工程师学会的 Jud Hall 复合材料制造奖。
o最佳海报和最佳演讲奖 - 弗吉尼亚大学工程研究研讨会2024 O SAE博士学位奖学金2023 O Sampe University Research Asschium Semposium Semiposium Semie-Finistist 2022 O UVA Society o p.r.i. UVA学会。recognition for community service 2020 o James H. Sams Outstanding Senior Award – Clemson Mechanical Engineering Department 2015 o Clemson Formula SAE Team MVP Award 2015 o E. Wayne Kay Scholarship – Society of Manufacturing Engineers 2014 o Fresenius Medical Care Scholarship 2013 o Frank H. Slocum Jr. Endowed Scholarship in Motorsports and Automotive Studies 2013 o Mark Van Bellamy Brooks Endowed Scholarship - Robert H. Brooks体育科学学院2012年O Earl and Myrtle Walker奖学金 - 制造工程师协会2011年北卡罗来纳州年轻企业家奖 - 国家独立商业联合会2010
Christos Kassapoglou 获得了麻省理工学院的航空航天学士学位和两个硕士学位(航空航天和机械工程)。自 1984 年以来,他一直在工业界工作,先是在比奇飞机公司负责全复合材料的星际飞船 I,然后在西科斯基飞机公司的结构研究小组工作,专门分析全复合材料科曼奇和其他直升机的复合材料结构,并领导由美国国家航空航天局和美国陆军资助的内部资助研究和项目。自 2001 年以来,他一直为美国多家公司提供复合材料结构在飞机和直升机上的应用咨询。2007 年,他以副教授的身份加入代尔夫特理工大学航空航天工程系(航空航天结构)。他的兴趣包括复合材料的疲劳和损伤容限、夹层结构分析、成本和重量的设计和优化以及技术优化。他在相关主题上发表了 40 多篇期刊论文和 3 项已发布或正在申请的专利。他是 AIAA、AHS 和 SAMPE 的成员。
日本IPF日本是一次国际展览,每三年举行一次国际展览,于2023年11月28日至12月2日在Makuhari Messe六年(现场)举行。ICC还在Sampe Ja Pan Advanced M Aterials Technology展览202 3上展出,从12月29日到Kyo Big Sight在12月1日至12月1日,共同使用了高级复合材料(HACM)的SS SS Ociation。由ICC和日本其他2个COMPOSITES研究中心共同运营的综合公路财团(CHC)也与32家公司和组织建立了一个大型CHC展位,并展示了面板和产品样品,以引入相关技术。与Hokuriku Advanced Compos材料研究协会(HACM)和ICC的会员公司和机构一起,我们介绍了我们的最新技术来实现可持续的社会,例如利用从天然技术到复合模制的材料,综合成型的应用,环境低下的制造技术,循环系统的循环系统,以及Automobile或Automobilesical或Automobilesical或Enerona的应用程序。许多游客在我们的展位停下来,热切地看着展示面板和展览,提出问题,并对最新的复合技术表现出极大的兴趣。
[1] E.H. Baalbergen, E. Moerlan, W.F.Lammen, P.D.Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] A.J.de Wit, W.F.Lammen, H.S.Timmermans, W.J.Vankan, D. Charbonnier, T. van der Laan, P.D.Ciampa (2019) 飞机供应链的协同设计方法:多级优化。NLR-TP-2019-202。[3] W.F.Lammen, P. Kupijai, D. Kickenweitz, T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。[4] E. Amsterdam, J.W.Wiegman, M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] F.P.Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020- 415。[6] F.P.Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] F.P.Grooteman, E. Lee, S. Jin, M.J. Bos (2019) 极限载荷系数降低。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[8] E. Amsterdam, F.P.Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。[9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳裂纹扩展速率的现象学模型。待提交。[10] W.J.Vankan, W.M.van den Brink, R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。[11] J.W.van der Burg, B.B.Prananta, B.I Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。[12] J. van Muijden, B.B.Prananta, R.P.G.Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans, B.B.Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。NLR-TP-2019-368。[15] L. Paletti, W.M.[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。[16] J.C. de Kruijk (2018) 使用机器人技术实现复合材料自动化制造可降低成本、交货时间和废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] W.M.van den Brink、R. Bruins、C.P.Groenendijk、R. Maas、P. Lantermans (2016) 复合热塑性水平稳定器扭力箱的纤维引导蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合格栅加固板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲会议上发表。[19] M.H.Nagelsmit、C. Kassapoglou、Z. Gürdal (2010) 一种用于提高损伤容限的新型纤维放置架构。NLR-TP-2010-626。[20] A. Clarke、R.J.C.Creemers, A. Riccio, C. Williamson (2005) 全复合材料耐损伤翼盒的结构分析与优化。NLR-TP-2005-478。
[1] EH Baalbergen、E. Moerlan、WF Lammen、PD Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] AJ de Wit、WF Lammen、HS Timmermans、WJ Vankan、D. Charbonnier、T. van der Laan、PD Ciampa (2019) 飞机供应链的协同设计方法:多层次优化。NLR-TP-2019-202。[3] WF Lammen、P. Kupijai、D. Kickenweitz、T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。 [4] E. Amsterdam、JW Wiegman、M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] FP Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020-415。[6] FP Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] FP Grooteman、E. Lee、S. Jin、MJ Bos (2019) 极限载荷系数降低。在 2019 年飞机结构完整性计划 (ASIP) 会议上发表。 [8] E. Amsterdam,FP Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。 [9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳中裂纹扩展速率的现象学模型。待提交。 [10] WJ Vankan、WM van den Brink、R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。 [11] JW van der Burg、BB Prananta、BI Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。 [12] J. van Muijden、BB Prananta、RPG Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans、BB Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。NLR-TP-2019-368。[15] L. Paletti、WM van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天中的增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。 [16] JC de Kruijk (2018) 使用机器人技术实现复合材料的自动化制造,降低成本、缩短交货时间和提高废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] WM van den Brink、R. Bruins、CP Groenendijk、R. Maas、P. Lantermans (2016) 复合材料热塑性水平稳定器扭力箱的纤维转向蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合材料格栅加筋板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲展会上发表。[19] MH Nagelsmit、C. Kassapoglou、Z.Gürdal (2010) 一种提高损伤容限的新型纤维铺放结构。NLR-TP-2010-626。[20] A. Clarke、RJC Creemers、A. Riccio、C. Williamson (2005) 全复合材料损伤容限翼盒的结构分析与优化。NLR-TP-2005-478。