在整个演示过程中,可能会识别某些商业公司或产品以促进理解。这种认定并不意味着美国国家标准与技术研究所的推荐或认可,也不意味着所认定的公司或产品一定是最适合此目的的。
• 它具有高弹性模量和高抗拉强度,因此具有极强的耐磨、耐磨损和耐冲击性。 • 由于其高介电常数,它是极好的电绝缘体。 • 由于蓝宝石的热稳定性,当暴露于从低温到 2000C 以上的温度时,它不会失去任何机械和光学属性。 • 导热性大于其他光学材料和大多数电介质。 • 由于极端热循环,不会造成表面损坏或失透。 • 与其他光学材料不同,它在极高的温度下不会下垂或塌陷。 • 它具有很强的耐腐蚀性,并且比大多数其他光学和非光学硬质材料更耐腐蚀性化学品。 • 在高辐射系统中不会发生日晒。 • 卓越的光学传输范围从紫外线到中红外线。(见图 2)蓝宝石具有六边形/菱形结构,并且具有取决于晶体方向的属性(图 1)。蓝宝石衬底有 C、R、A 和 M 平面以及随机取向。随机取向最便宜,通常用于非关键光学或机械应用。
摘要:热膨胀是长度计量中导致不确定性的主要原因。NIST 设计了一种基于容器的折射仪,其目标是在测量氦折射率时将不确定度控制在 10 − 6;就环境条件下的折射率而言,精度目标是折射率为 3 × 10 − 11。为了达到这种精度水平,0 的长度。5 m 气室需要在 100 nm 以内。当在 20 ◦ C 下用坐标测量机测量容器长度时,这是可以实现的。但是,折射仪将在水和镓的热力学已知固定点附近运行,分别在 0 ◦ C 和 30 ◦ C 附近。容器由熔融石英玻璃制成,其标称热膨胀系数为 0。4 ( µ m/m)/K。因此,要将尺寸计量的精度扩展到20 ◦ C到水的三相点,需要知道熔融石英玻璃的热膨胀系数在10 (nm/m)/K或2 .5 %的范围内。描述了一种测量熔融石英玻璃热膨胀系数的方法。测量原理是监测法布里-珀罗腔谐振频率随温度变化的变化;法布里-珀罗腔由熔融石英玻璃制成。测量中的标准不确定度小于0 .6 (nm/m)/K,或0 .15 %。性能的限制可以说是反射相移温度依赖性的不确定性,因为薄膜涂层的热光系数和热膨胀系数都无法可靠地知道。但是,其他几个不确定性因素的数量级也相同,因此任何性能改进都需要付出巨大努力。此外,对三个不同样品的测量表明,材料的不均匀性导致熔融石英的有效热膨胀系数存在差异;样品间热膨胀的不均匀性比单个样品的测量不确定度高 17 倍。
1 浙江大学物理系量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310027 2 清华大学交叉信息研究院量子信息中心,北京 100084 3 阿里巴巴-浙江大学前沿技术联合研究院,杭州 310027 4 浙江大学杭州全球科技创新中心,杭州 311215 5 马里兰大学和 NIST 联合量子研究所及量子信息与计算机科学联合中心,美国马里兰州学院公园市 6 爱荷华州立大学物理与天文系,美国爱荷华州艾姆斯 50011 7 艾姆斯实验室,美国爱荷华州艾姆斯 50011 8 QuEra Computing Inc.,美国马萨诸塞州波士顿 02135 9 科罗拉多矿业学院物理系,美国科罗拉多州戈尔登 80401 10 美国国家标准与技术研究所,科罗拉多州博尔德 80305 11 上海启智研究所,中国上海市徐汇区云锦路 701 号人工智能大厦 41 层 200232
本研究改进了计量数据集的表面配准方法,以提高增材制造 (AM) 晶格的多方法鉴定精度。使用基于理论补充表面定义的派生几何基准特征对齐从 X 射线计算机断层扫描和 AM 晶格的坐标测量机获取的数据集,该理论补充表面定义已在最近的草案标准中建立,但在使用复杂 AM 结构时进行了有限的检查。基于空间相关子采样的晶格几何的改进采样配准方法被推导并显示可统计地减少测量源之间的差异。强调了明确定义的采样实践和定义的重要性。讨论了这种方法对复杂 AM 部件的多方法鉴定的适用性。本研究为利用新标准中正在考虑的规范奠定了基础,并可能采用验证技术。
我们考虑通过量子传感器网络中的量子比特传感器估计一组局部参数的多个解析函数的问题。为了解决这个问题,我们重点介绍了 Rubio 等人的传感器对称性能界限的概括,[ J. Phys. A 53 , 344001 (2020)],并开发了一种用于测量此类函数的优化顺序协议。我们将两种方法的性能相互比较,并与不利用量子纠缠的局部协议进行比较,强调测量函数的系数向量在确定最佳测量协议选择方面的几何意义。我们表明,在许多情况下,尤其是对于大量传感器,优化的顺序协议比其他策略产生更准确的测量结果。此外,与传感器对称方法相比,顺序协议总是可以明确实现的。顺序协议非常通用,具有广泛的计量应用。
摘要 空军研究实验室增材制造建模挑战系列的挑战 4 要求参赛者根据 IN625 试件的实验数据和广泛表征,预测几种特定挑战晶粒在拉伸载荷期间的晶粒平均弹性应变张量。在本文中,我们介绍了解决此问题的策略和计算方法。在比赛阶段,直接使用来自实验的特征化微观结构图像,通过基于遗传算法的材料模型识别方法预测某些挑战晶粒的机械响应。随后,在比赛后阶段,引入了一种基于适当广义分解 (PGD) 的降阶方法来改进材料模型校准。这种数据驱动的降阶方法非常有效,可用于识别力学和材料科学领域中的复杂材料模型参数。已经报告了原始预测和重新校准的材料模型的绝对误差结果。预测表明,整体方法能够处理局部响应识别的大规模计算问题。重新校准的结果和加速表明使用 PGD 进行材料模型校准的前景看好。
通用智能涉及将许多信息源整合成一个连贯、自适应的世界模型。要设计和构建通用智能硬件,我们必须考虑神经科学和超大规模集成的原理。对于能够实现通用智能的大型神经系统,用于通信的光子学和用于计算的电子学的属性是互补和相互依赖的。使用光进行通信可以实现跨大型系统的高扇出率和低延迟信号传输,而不会出现依赖流量的瓶颈。对于计算,约瑟夫森电路固有的非线性、高速度和低功耗有利于复杂的神经功能。在 4 K 下操作可以使用单光子探测器和硅光源,这两个特性可以实现效率和经济的可扩展性。在这里,我概述了光电硬件的概念,从突触电路开始,继续进行晶圆级集成,并扩展到与光纤束互连的系统,可能达到人脑的规模甚至更大。
摘要 黑体辐射源是可计算的辐射源,常用于辐射测量、温度传播和遥感。尽管黑体源和辐射计无处不在,但它们的系统结构却非常复杂。我们设想了一种新的、主要的黑体辐射测量方法,即使用可极化量子系统集合(如里德堡原子和双原子分子)进行测量。使用这些精妙的电场传感器进行量子测量可以实现主动反馈、改进设计,并最终降低黑体标准的辐射和热不确定性。便携式、无需校准的里德堡原子物理包还可以补充各种经典辐射探测器和温度计。量子测量和黑体测量的成功融合为黑体物理学提供了一个新的基本范式。
COVID-19 时代为全球生物银行社区带来了许多新挑战。为了让生物银行社区更好地应对当前和未来的挑战,国际生物和环境档案馆协会 (ISBER) 成立了 COVID-19 应对工作组,以确定生物银行工具(支持良好实践的现有资源)的需求和差距,例如标准、最佳实践、业务等,并提出有益于社区的建议。为了实现这些目标,工作组提出了一系列问题,以探索各个生物银行的经验,重点是确定关键挑战和方法,包括所采用的工具。ISBER 使用这些问题设计了一项调查,并对其进行了管理。本文总结了从调查回复中获得的汇总数据,说明了遇到的一些主要问题,并确定了调查受访者认为哪些工具最有用。特别是,本文重点关注 COVID-19 时代最初几个月发现的挑战。提供建议以支持生物库未来的应急准备、吸取经验教训并提出解决方案以弥补已发现的差距。分析和完整的调查数据集还将为更大的任务组目标提供信息,以制定具体的工具建议。