摘要 - 当今超级传导量子计算机原型中对低温量子的控制提出了显着的可伸缩性挑战,这是由于产生/路由的巨大成本,需要从室温下的经典控制器发送的模拟控制信号到稀释冰箱内的量子芯片。因此,工业和学术界的研究人员致力于设计炸药内的古典控制器,以减轻这些挑战。由于CMOS逻辑的成熟度,许多工业努力(Microsoft,Intel)集中在冷冻-CMO上,作为设计炸药内经典控制器的近期解决方案。与此同时,超级导管单通量量子(SFQ)是为大规模填充内部控制器提出的替代性,不太成熟的经典逻辑家族。SFQ逻辑具有超高速度和非常低的功耗,有可能最大程度地提高可扩展性。但是,SFQ逻辑的体系结构设计由于其非常规的脉冲驱动性质以及缺乏密集的记忆和逻辑而构成了挑战。因此,在建筑层面的研究对于指导建筑师设计基于SFQ的大型量子机的经典控制器至关重要。在本文中,我们提出了Digiq,这是嘈杂的中级量表量子(NISQ) - 基于SFQ-基于SFQ-的经典控制器的第一个系统级设计。我们对基于SFQ的控制器进行设计空间利用,并共同设计量子门分解和基于SFQ的分解实现,以找到最佳的SFQ友好设计点,以交易延迟和控制能力,同时确保良好的量子algorgorithmic algorithmic actentim and Control。我们的共同设计产生了单个指令,多个数据(SIMD)控制器体系结构,具有很高的可扩展性,但对控制脉冲的校准施加了新的挑战。我们提出了软件级别的解决方案,以应对这些挑战,如果未解决的话,鉴于Qubit Hardware的缺陷,量子电路的限制会降低量子电路。为了验证和表征Digiq,我们首先使用硬件说明语言实现它,并使用最新/已验证的SFQ合成工具合成它。我们的合成结果表明,Digiq可以在稀释冰箱的紧密功率和面积预算范围内以> 42,000 QUIT的尺度运行。第二,我们通过建模执行时间和
完全集成的量子计算架构 • >8-16 倍更高的复用率,消除了开销 • 内置错误校正 • 降低 1,000 倍的能量和热量耗散 • >10 倍更快的时钟速度 + 更低的延迟 • 降低 128 倍的控制脉冲复杂度 • 超导制造商业化就绪 • 系统组件便宜 400 倍
国际超导工业技术中心(主席:Araki Hiroshi)的超导工程研究所(教师Tanaka Shoji)开发了一个4x4超导数据包开关,该开关在40GHz工作,大约100倍,大约100倍。开关容量为5mm平方芯片上的每秒160千兆位(Gbps),已经与商业可用的高端路由器的开关相同,该路由器的尺寸为几十厘米。通过扩大将来的规模,可以实际使用大容量数据包开关,从而破坏半导体的技术极限。 这种超高速度超导路由器开关开发的技术背景在以下几点中。换句话说,如果信息和通信跟踪以年龄的2到3倍的速度增加,到2010年,核心路由器的容量将需要数十TBP,这是当前容量的数百倍。但是,该发展是由于在半导体中将路由器能力提高到该水平的困难而激发了发展。此外,超导开关被认为最有可能使用称为SFQ的电路,该电路的原理与半导体不同,并且近年来制造和电路设计技术的快速进步一直是技术开发背后的主要推动力。 该SFQ电路是一种通过操作单个单元量子SFQ的每个单元(英文名称,单通量量子)来处理信息的设备技术,尽管它比半导体更快地操作,但它会消耗低功率,从而使高度积分较少。开关电路这次开发了4,200个基于尼伯的超导式约瑟夫森连接,并且具有4x4(4个输入和4个输出)开关函数,可以大规模扩展。 该报告的结果于2004年4月19日在IEEE高性能转换和路由(HPSR)的研讨会上宣布,这是在美国亚利桑那州凤凰城举行的国际路由器相关会议。 (Hidaka Mutsuo,SRL/ISTEC设备研发部低温设备开发办公室主任,编辑办公室Tanaka Yasuzo)
开发的技术:光子学和低温电子学与磁屏蔽混合集成 (HIPCEMS) 技术为超导电子学的磁屏蔽提供了一种定制解决方案,同时允许光学互连以实现节能的信息传输。该技术提供了一种芯片级屏蔽和封装解决方案,可在低温下提供磁隔离。磁隔离对于基于单通量量子 (SFQ) 架构的信号处理 SCE 芯片至关重要,因为信息以磁通量量子的形式存储。HIPCEMS 技术为 SCE 设备的更密集集成提供了一种途径,同时仍提供所需的磁噪声抑制。
•为了基于SC2节点,我们使用自换连接器和150 nm的电感器设计测试电路,并进行了制造和测试,例如DC-SFQ和SFQ-DC转换器,平衡比较器,SFQ和QFP逻辑,Ac-Ac-ships exhips cubsister,Ac-Ac-ships expressers,Ac-Ac-ships Expisters等。,我们通过在最接近堆栈中JJ层的NB层上实现了150 nm线宽电感的单层通过在NB层上实现150 nm线宽电感的单层,从而证明了电路密度的增加约2倍。对于具有600-µA/µm 2自换的约瑟夫森连接的移位寄存器,我们达到的电路密度为1.3∙107 JJS/cm 2,因此超过了每1 cm 2芯片的10m JJS阈值,在大尺度超尺寸超大型电子系统中应用所需的集成量表所需的集成规模所需。
摘要 - 单个频率 - 量子(SFQ)数字电路主要基于依赖可靠的基础过程的单元,这些过程利用超导地面平面作为活动元件和微带线互连的参考。与二进制信息相关的磁性弹力H / 2 E的量子对应于需要在太空中定位的磁场能量密度,以限制相邻细胞之间的相互作用。换句话说,除非在设计阶段仔细考虑电路,否则相互电感会损害正确的行为。我们对约瑟夫森传输线(JTL)细胞进行了广泛的研究,并具有不同的地面平面和偏置垫的不同地理配置。我们发现使用电感的使用有时会遵循远离直觉告诉的路径,这可能导致非优化的设计。在本文中,我们强调由于存在外部或内部磁场而引起的局限性。然后,我们将获得的性能与具有优化几何形状的性能进行了比较,从设计阶段考虑了磁场的存在。
摘要 — 量子计算机的规模不断扩大,现在的设计决策试图从这些机器中榨取更多的计算能力。本着这种精神,我们设计了一种方法,通过调整量子纠错中使用的协议来实现“近似量子纠错 (AQEC)”,从而提高近期量子计算机的计算能力。通过近似成熟的纠错机制,我们可以增加近期机器的计算量(量子比特 × 门,或“简单量子体积 (SQV)”)。我们设计的关键是一个快速硬件解码器,它可以快速近似解码检测到的错误综合征。具体来说,我们展示了一个概念验证,即通过在超导单通量量子 (SFQ) 逻辑技术中设计和实现一种新算法,可以在近期量子系统中在线完成近似错误解码。这避免了隐藏在所有离线解码方案中的关键解码积压,这会导致程序中 T 门数量的空闲时间呈指数增长 [58]。