摘要。分散的链上智能合约可以实现无信任的集合,但其固有的数据透明度和执行费用阻碍了广泛采用。现有的加密方法会产生高计算成本,并且缺乏一般性。同时,先前基于TEE的解决方案遭受了实际局限性,例如无法支持合同之间的相互作用,依赖牢不可破的T恤和可用性。我们介绍了RaceTee,这是一种实用且隐私的外观架构,用于利用可信赖的执行环境(TEES)的智能合约。Racetee将交易订购(链)从执行(链)中分离出来,并在TEES中进行计算执行,从而确保机密性并最大程度地减少开销。它通过三个关键改进进一步增强了实用性:支持安全的合同互动,提供了一个关键的旋转方案,即使在TEE漏洞的情况下,该方案即使是向前和向后的保密性,并促进与现有的区块链完全兼容的情况,从而改变了用户交互模型。为了验证其可行性,我们使用Intel SGX和以太坊进行了竞争,证明了其在各种用例中的适用性并评估其性能。
关于Boustead Singapore Limited成立于1828年,Boustead Singapore Limited(SGX:F9D)是SGX Mainboard上列出的渐进性全球基础设施相关工程和技术组。作为新加坡最古老的连续业务组织,我们专注于主要基础设施的利基工程和发展,以支持可持续的共享社会经济增长。我们的能源工程部门和房地产解决方案部的强大工程服务套件和智能,可持续和未来的房地产开发中心。此外,我们还提供技术驱动的变革性解决方案,以改善各行各业的生活质量。我们的地理空间部门提供专业服务,并专门将ESRI ArcGIS技术分销 - 世界领先的地理信息系统,智能映射和位置分析企业平台 - 向亚太地区的主要市场。企业平台开发数字基础架构解决方案和数字双胞胎,为国家,城市和社区提供智能选择,并帮助他们在本地和全球范围内应对复杂的挑战。增强重要基础设施和资源的计划和管理对于确保经济韧性,保护环境和维持社会责任是至关重要的。我们的医疗保健部提供了创新的医疗解决方案,以解决与年龄有关的慢性疾病和流动性问题,重点是亚太地区的康复护理和运动科学。迄今为止,我们在全球93个国家和地区安装了项目基础。在整个亚洲,澳大利亚,欧洲,非洲和美洲遍布广阔的全球网络,我们准备为世界服务。多年来,我们一直获得许多著名奖项,包括享有声望的福布斯亚洲200奖最佳奖项。在2019年,我们被证券投资者协会(新加坡)授予最透明的公司奖和可持续性奖(亚军)。在2020年至2023年之间,我们还在新加坡最好的雇主,新加坡增长最快的公司和亚太地区的高增长公司中排名。,我们还在新加坡公司奖2021特别版中获得了公司卓越和弹性奖。请访问我们www.boustead.sg。关于成立于2021年的Evotion Labs PTE Ltd,成立了Evotion Labs Pte Ltd,以满足在整个东南亚的方便,可持续和无效运输的紧迫需求。evotion Labs的使命是建立一个强大的EV自行车生态系统,并为SEA中的基础设施充电,以使社区具有生态友好的流动性选项,以减少碳足迹,增强连接性并推动该地区迈向更绿色的未来。通过www.evotionlabs.com访问我们。与Boustead Singapore Limited有关的投资者和媒体询问的联系信息,请联系:公司营销与投资者关系团队T +65 6747 0016 E ir.team@bousteam@boustead.sg,以获取与EVOTION LABS PTE LTD相关的媒体查询,请联系:Kevin Mah Mah M +65 9644 8550 E Kevion <5550 E KEK;
尽管有福利,但现有的受信任的执行环境(TEE)或飞地因缺乏透明度,脆弱性和各种限制而受到批评。一个重要的限制是,它们仅提供无法为不同应用程序定制的静态和固定的硬件信任计算基础(TCB)。该设计通过在软件TCB中的硬件TCB和Buggy外围驱动程序中包括不需必要的外围设备,违反了特权的原则。此外,现有的TEE Time-Share带有丰富的执行环境(REE)的处理器核心,使执行效率较低,并且容易受到缓存侧通道攻击的影响。尽管许多以前的项目都集中在SGX,TrustZone或RISC-V上的TEE中解决软件问题,但硬件系统设计中固有的某些TEE问题是无法单独使用软件解决的。在本文中,我们提出了byotee(build y我们的生锈的ecution e n-Vironments),这是一种易于使用的硬件和软件共同设计的基础架构,用于使用现场可编程门阵列(FPGA)构建飞地(FPGA)。Byotee使用自定义的硬件TCB创建飞地,并建立一个动态的信任根,该根源允许从硬核系统上的预先介绍软件中不受限制执行对安全敏感的应用程序(SSA)。ad的byotee提供了证明飞地硬件和软件堆栈的完整性的机制。我们为Xilinx系统芯片(SOC)FPGA实施了一个Byotee系统。针对四个SSA和12个基准应用的低端Zynq-7000系统的评估证明了BYOTEE框架的使用,安全性,有效性和性能。
本文介绍了一个中央银行数字货币 (CBDC) 基础设施的创新项目。该架构注重安全性和可靠性,其特点包括:(1) 采用后量子密码 (PQC) 算法来确保长期安全性,甚至可以抵御能够访问密码相关量子计算机的攻击者;(2) 可以与可信执行环境 (TEE) 集成,以在第三方处理交易内容时保护其机密性;(3) 使用分布式账本技术 (DLT) 来提高系统中注册的所有交易的高透明度和防篡改能力。除了从理论上讨论该架构的优势外,我们还通过实验评估了其组件。即,作为 PQC 算法,我们考虑了美国国家标准与技术研究所 (NIST) 正在标准化的三种签名方案,即 CRYSTALS-Dilithium、Falcon 和 SPHINCS+。这些算法集成到 Hyperledger Besu (DLT) 中,并在 Intel SGX TEE 环境内部和外部执行。根据我们的结果,CRYSTALS-Dilithium-2 与经典 secp256k1 签名相结合,在 DLT 中签署区块时可实现最短的执行时间,在没有 TEE 的情况下达到 1.68 毫秒,在有 TEE 的情况下达到 2.09 毫秒。同样的组合也显示出最佳的签名验证结果,在没有 TEE 的情况下达到 0.5 毫秒,在有 TEE 的情况下达到 1.98 毫秒。我们还描述了评估方法的主要方面以及验证所提议基础设施的后续步骤。从我们的实验中得出的结论是,PQC 和 TEE 的组合有望实现高度安全有效的基于 DLT 的 CBDC 场景,随时准备应对数字金融未来的挑战和潜在的量子威胁。
软件Main Developper我在博士学位期间开发的工具及其实验评估都是在GitHub上开源的。binsec/rel:密码恒定时和秘密射击的二进制级符号分析仪。对308个Cryprograper二进制的实验评估。可在以下网址提供:https://github.com/binsec/rel和https://github.com/binsec/rel_bench binsec/haunted:二进制分析仪:检测Spectre-Pht和Spectre-Spectre-Stl漏洞。对小测试用例和5个加密原始物的实验评估。可用:https://github.com/binsec/haunted和https://github.com/binsec/binsec/haunted_bench properties vs.编译器:可扩展的框架,以检查多个编译器设置中恒定时间和秘密的保存。应用:分析恒定时间的总计4148个二进制文件和1156个二进制文件用于秘密呼吸。可在以下网址提供:https://github.com/binsec/rel_bench/tree/main/main/properties_vs_compilers spectre-stl litmus测试:一组由社区重复使用的Spectre-Spectre-stl的小测试用例。可在以下网址提供:https://github.com/binsec/haunted_bench/blob/master/src/src/litmus-stl/programs/spectrev4.c贡献者proteus:可扩展的RISC-V CPU用于硬件安全功能开发。特别是,我为潜在安全性扩展提供了贡献,该扩展为恒定时间程序提供了安全的推测。proteus可从https://github.com/proteus-core and Prospect提供,请访问https://github.com/proteus-core/prospect pandora:符号执行工具,用于验证Intel SGX Enclave Shielt runtimes。可在以下网址提供:https://github.com/pandora-tee加密基准:统一基准测试以比较
移动人群允许在时间和空间上收集大量数据,以养活我们的环境知识,并将这些知识与用户行为联系起来。但是,移动人群面临的一个重大挑战是保证为贡献用户保存隐私。众包系统中的隐私保存导致了两种主要方法,有时是合并的,分别是为了换取奖励的隐私,并利用了增强隐私的技术'''匿名化数据'。尽管相关,但我们声称这些方法不能充分考虑到用户对所提供数据的使用的容忍度,以便人群系统保证用户保证用户的预期机密水平,并促进了对不同任务的人群的使用。为此,我们利用了completeness属性,该属性可确保所提供的数据可用于所有者同意的所有任务,只要它们与其他来源进行分析,并且由于用户对用户的相关贡献而没有违反隐私的侵犯,并且更加严格的隐私要求。因此,挑战是要在分析数据时确保completentions在允许数据中用于尽可能多的任务,并促进所得知识的准确性。这是通过对数据分布敏感的聚类算法来实现的,该算法优化了数据重用和实用程序。使用SGX飞地的原型实现进一步允许运行实验,以表明我们的系统会导致合理的性能开销,同时为恶意对手提供强大的安全性。尽管如此,即使在有恶意的对手能够在服务器端起作用的恶意对手,我们至关重要的是,我们为此引入了by-design-by-design架构利用可信赖的执行环境。©2022 Elsevier B.V.保留所有权利。
为解决以云为中心的软件部署模式的安全挑战,芯片和云供应商正在引入机密计算——一个总称,旨在提供硬件和软件机制,保护云工作负载免受云提供商及其软件堆栈的侵害。如今,英特尔软件防护扩展 (SGX)、AMD 安全加密虚拟化 (SEV)、英特尔信任域扩展 (TDX) 等通过在 CPU 硬件边界以下加密应用程序内存,提供了一种保护云应用程序免受云提供商侵害的方法,因此只需要信任 CPU 供应商。遗憾的是,现有的硬件机制无法自动保证受保护的系统在配置和启动期间不被篡改。这种保证依赖于硬件信任根,即一个受完整性保护的位置,可以以可信的方式存储测量结果、扩展测量结果并向用户验证测量日志(远程证明)。在本研究中,我们设计并实现了一个虚拟可信平台模块 (vTPM),该模块无需信任云提供商即可虚拟化硬件信任根。为了确保 vTPM 在提供商控制环境中的安全性,我们利用 SEV-SNP 硬件独特的隔离特性,使我们能够在安全区域环境中执行安全服务(例如 vTPM),并免受云提供商的影响。我们进一步开发了一种新颖的 vTPM 状态管理方法,其中 vTPM 状态在重启后不会保留。具体来说,我们开发了一个无状态的临时 vTPM,它支持远程认证,且主机上没有任何持久状态。这使我们能够将每个机密虚拟机与一个完全与提供商控制环境和其他虚拟机隔离的 vTPM 私有实例配对。我们的原型完全基于开源组件构建——Qemu、Linux 和 Keylime。虽然我们的工作是针对 AMD 的,但类似的方法
OPR:AFSOC/SGX 认证机构:AFSOC/SG 取代:AFTTP 3-42.6,2012 年 1 月 9 日 Col Matthew P. Hanson) 页数:37 空军战术、技术和程序 (AFTTP) 3-42 系列出版物是医疗战斗支援能力的主要参考。本文件 AFTTP 3-42.6 概述了特种作战和支持所有 SOF 和任务的美国空军 (USAF) 医疗战术、技术和程序 (TTP)。它描述了 AFSOC 医疗部队的组织、能力、规划、后勤、培训和行动,主要涉及部署的行动。确保根据 AFI 33-322《记录管理和信息治理计划》维护根据本出版物中规定的流程创建的所有记录,并根据位于 https://www.my.af.mil/afrims/afrims/afrims/rims.cfm 的空军记录处置计划进行处置。使用 AF IMT 847《出版物变更建议》将建议的变更和对本出版物的疑问提交给主要责任办公室 (OPR)。将 AF IMT 847 传递给适当的指挥系统和上级主要司令部 (MAJCOM)。变更摘要本出版物已进行重大修订,必须进行全面审查。此次修订更新并澄清了整个文档中的信息,包括各级角色、职责和关系。它更新了美国特种作战司令部 (USSOCOM) 特种作战部队 (SOF) 的作战重点和核心任务,并修订了空军特种作战司令部 (AFSOC) 医疗单位类型代码 (UTC) 叙述。它扩展并澄清了医疗理论和政策,适用于 AFSOC 医疗资产在驻地和部署时的作战使用。它扩展了医疗后勤、作战规划和通信部分。应用:本出版物适用于所有空军军事人员和文职人员,包括空军预备役部队 (ARC)。本文件具有权威性,但不具有指导性。范围:特种作战任务由专门组织、训练和装备的军事力量执行,以非常规手段实现军事、政治、经济或心理目标,包括但不限于敌对、拒止或政治敏感地区。无论是从应急地点 (CL)、合作安全地点、持久地点 (EL)、前沿作战地点 (FOS)、初始 CL 还是主要作战基地作战,AFSOC 医疗资产都提供医疗远征作战支援 (ECS)、创伤护理和伤员后送
表 1 扩展 PCR17 的摘要值 ...................................................................................................... 17 表 2 扩展 PCR18 的摘要值 ...................................................................................................... 18 表 3. MLE 标头结构 ............................................................................................................. 22 表 4. MLE/SINIT 功能字段位定义 ...................................................................................... 24 表 5. SINIT/MLE 功能的真值表 ............................................................................................. 25 表 6. SGX 索引内容 ............................................................................................................. 79 表 7. IA32_SE_SVN_STATUS MSR (0x500) ............................................................................. 79 表 8. 经过身份验证的代码模块格式 ............................................................................................. 83 表 9. AC 模块标志说明 ............................................................................................................. 86 表 10. 芯片组 AC 模块信息表 ................................................................................................ 88 表 11. 芯片组 ID 列表 ............................................................................................................. 90 表 12. TXT_ACM_CHIPSET_ID 格式 ...................................................................................... 90 表 13. 处理器 ID 列表 .......................................................................................................... 91 表 14. TXT_ACM_PROCESSOR_ID 格式 ...................................................................................... 91 表 15. TPM 信息列表 ............................................................................................................. 91 表 16. TPM 功能字段 ............................................................................................................. 92 表 17 ACM 版本信息列表 ............................................................................................................. 93 表 18 芯片组 ID 列表 ............................................................................................................. 94 表 19 芯片组 2 ID 列表 ............................................................................................................. 95 表 20 TXT_ACM_CHIPSET_ID_2 格式 ............................................................................................. 95 表 21 处理器 ID 列表 ............................................................................................................. 96 表 22 TPM 信息列表 ............................................................................................................. 97 表 24. 处理器启动的 Intel ® TXT 关闭的类型字段编码 ................................101 表 25. TPM 局部地址映射 ...................................................................................................... 112 表 26. Intel ® 可信执行技术堆 ................................................................................................ 113 表 27. BIOS 数据表 ................................................................................................................ 116 表 28. MLE 标志字段位定义 ................................................................................................ 117 表 29. OS 到 SINIT 数据表 ................................................................................................ 119 表 30. SINIT 到 MLE 数据表 ................................................................................................ 122 表 31. SINIT 内存描述符记录 ................................................................................................ 123 表 32 扩展堆元素注册表 ........................................................................................................ 125 表 33. AUX 数据结构 ................................................................................................................ 140 表 34. SINIT 退出并返回 MLE 时的平台状态 ........................................................................ 142 表 35. 事件类型........................................................................................................... 146 表 36. 通用 TXT.ERRORCODE 寄存器格式 .......................................................................... 153 表 37. CPU 发起的 TXT 关闭的 TXT.ERRORCODE 寄存器格式 ................................................ 153 表 38. ACM 发起的 TXT 关闭的 TXT.ERRORCODE 寄存器格式 ............................................................. 154 表 39. TPM 系列 2.0 NV 存储矩阵 ......................................................................................... 156................................................. 142 表 35. 事件类型 .......................................................................................................... 146 表 36. 通用 TXT.ERRORCODE 寄存器格式 ................................................................ 153 表 37. CPU 发起的 TXT 关闭的 TXT.ERRORCODE 寄存器格式 ................................................ 153 表 38. ACM 发起的 TXT 关闭的 TXT.ERRORCODE 寄存器格式 ................................................ 154 表 39. TPM 系列 2.0 NV 存储矩阵 ............................................................................................. 156................................................. 142 表 35. 事件类型 .......................................................................................................... 146 表 36. 通用 TXT.ERRORCODE 寄存器格式 ................................................................ 153 表 37. CPU 发起的 TXT 关闭的 TXT.ERRORCODE 寄存器格式 ................................................ 153 表 38. ACM 发起的 TXT 关闭的 TXT.ERRORCODE 寄存器格式 ................................................ 154 表 39. TPM 系列 2.0 NV 存储矩阵 ............................................................................................. 156
● 2023 年小型卫星研讨会:未来战场 - 非地球静止轨道系统对频谱有何影响(2023 年 2 月 7 日至 9 日) ● 新美国低地球轨道卫星星座:为什么智能共享规则在太空中如此重要(2022 年 10 月 24 日) ● EDICON 2022 卫星宽带领域的最新趋势:低地球轨道、中地球轨道、地球轨道和巨型星座(2022 年 10 月 26 日) ● IEEE 无线和微波技术会议 (WAMICON 2022)(2022 年 4 月 27 日至 28 日) ● 卫星 2022 主持人小组讨论如何重新定义小型卫星地面系统和基础设施(2022 年 3 月 21 日) ● 2022 年东北射电天文台公司 (NEROC) 研讨会(由麻省理工学院主办)关于本科无线电科学课程(2022 年 2 月24,2022) ● 卫星 2021 主持人小组讨论如何克服设计限制和构建完美的低成本天线(2021 年 9 月 9 日)● EDICON 2021 当今的卫星宽带格局:LEO、MEO、GEO 和巨型星座(2021 年 8 月 18 日)● On Orbit 播客采访 Jeffrey Hill 关于平板天线技术(2021 年 8 月 6 日)● 空间数字论坛 2021 - 当今的卫星能做什么?了解新服务和功能(2021 年 7 月 26 日)● 主持人美国国家科学院工程与医学学院 (NASEM) 关于克服女性创业结构性障碍的研讨会(2021 年 6 月 21 日)● 密歇根大学气候与空间研讨会 - LEO 通信系统格局:技术进步和干扰缓解(2021 年 4 月 8 日)● 主题专家采访者 - Facebook Connectivity 的 Lumen 光通信纪录片(2020 年 12 月)● 宾夕法尼亚大学 Apogee K-12 女子电气工程项目职业小组成员(2020 年夏季)● 达特茅斯工程物理空间等离子体研讨会发言人(2020 年 1 月);从太空到地球:低地球轨道通信系统格局(2020 年 1 月)● 卫星 2020:小组主持人 – 未来月球经济:开采新资源 – 因 COVID 取消● 麻省理工学院 AeroAstro 研究生女性职业讨论研讨会(2019 年 10 月)● 女性航空航天研讨会小组成员:开始教师生涯(2019 年 5 月)● NASA JPL 未来空间辐射保障(2019 年 6 月);吸引和留住下一代空间辐射科学家和工程师● NCSU 机械和航空航天工程毕业典礼演讲者(2018 年 5 月)● NCSU 机械和航空航天工程特别讲座(2018 年)● 联合国妇女性别平等和主流化 (GEM) 女性互联网:挑战还是机遇?主旨小组成员(2017 年 3 月)● 卫星 2017 会议 – SGx:导师的重要性 ● 麻省理工学院航空航天女性午餐演讲系列 - OneWeb 通信系统(2017 年 2 月) ● 与联合国训练与研究中心联合举办的 2015 年国际电信联盟世界无线电大会 (WRC) 主题演讲者“关于在无线电通信谈判中赋予女性权力的女性领导力研讨会 - 关于女性在技术领域领导力的小组讨论” ● 日内瓦欧洲航空航天女性 - 太空创业(2015 年 3 月)