聚合物复合材料由于其出色的强度和耐用性(相对于重量而言)而越来越多地用于航空航天应用。本书的修订版总结了航空航天结构复合材料部件的设计、制造和性能方面的最新研究和发展。它详细讨论了传统和先进聚合物复合材料的设计、建模和分析,深入了解了机械性能和长期性能,例如强度、刚度、冲击、抗爆和疲劳。本书还包含有关飞机特定主题的附加章节,例如雷击保护、损伤容限和适航性。第一部分包括关于 2D 和 3D 编织复合材料的建模、结构和行为的章节;用于复合材料和部件的制造工艺;层压板的屈曲和抗压强度;以及复合材料的制造缺陷。第二部分讨论了复合材料在航空航天结构设计中的性能,包括以下章节:结构元件刚度和强度建模;单轴和多轴载荷下的疲劳;断裂力学;冲击强度;耐撞性;螺栓接头设计和失效分析;航空航天复合材料对温度和湿度的响应;爆炸响应;修复;损伤的无损评估;结构健康监测 (SHM);适航性;以及认证。人们普遍认为,设计耐损伤结构的当前做法是利用复合材料的异质性,并配置材料,使其能够承受某些类型的损伤并自然阻止其传播。然而,这是一种被动方法,因此它有其自身的局限性。另一方面,复合材料的 SHM 技术的发展是一项新兴技术,它似乎可以通过确保早期检测和监测损坏来提供提高可靠性和安全性的方法。预测能力也正在出现,这些能力能够估计具有已知损坏状态的复合结构的残余刚度和强度。如果我们首先开发并协同结合新功能,以实现在役损伤检测和表征、健康监测和结构预测,那么设计抗损伤和耐损伤复合结构的新策略可能会成为可能。贯穿这些的线索确保飞机系统的结构可靠性将大大增强对其安全性的信心,降低过早出现故障的概率,并降低运行和维护成本。
[1] MIL STD 1530Dc1,国防部标准实践,飞机结构完整性计划(2016 年 10 月 13 日)。[2] Lindgren,E。“美国空军研究实验室对结构健康监测在风险管理支持中的观点”,PHM Soc Euro Conf,STO-MP-AVT-305(7 月2018)。[3] Worden,K.,Farrar,C. R.,Manson,G.,&Park,G.(2007)。结构健康监测的基本公理。英国皇家学会会刊 A:数学、物理和工程科学,463(2082),1639-1664。[4] Aldrin, J. C.、Annis, C.、Sabbagh, H. A. 和 Lindgren, E. A.,“评估无损评估 (NDE) 和结构健康监测 (SHM) 技术损伤表征能力的最佳实践”,第 42 届 QNDE 进展年度回顾,包括第 6 届欧洲-美国 NDE 可靠性研讨会,第 1706 卷,第 200002 页,AIP 出版社,(2016 年)。
SHM旨在通过重新定义人们与流动性之间的关系来彻底改变流动性体验。第一个模型Afeela 1通过集成高级软件和高性能硬件,追求人与车辆之间的互动关系,从而产生智能移动性。afeela 1将继续发展为一种新形式的移动性,通过与创建者和正在进行的软件更新的合作,与人保持紧密联系。Afeela 1配备了高级驾驶员辅助系统(ADA),可减轻驾驶压力,并提供安全可靠的移动性体验,以及可以与车辆进行通信的交互式个人代理。机舱具有独特的音响系统,并为每个座椅提供了最佳放置,使乘员可以享受各种应用程序和娱乐内容。车辆的性能旨在提供与驾驶员的团结感,确保敏捷和稳定的处理,同时为所有乘客提供高质量的骑行。外部和室内设计追求细节的和谐和永恒的美学,内部使用高质量的功能
试卷 I - 力学与波动 第一单元 惯性参考系、牛顿运动定律、直线和圆周运动中粒子的动力学、保守力和非保守力、能量守恒、线性动量和角动量、一维和二维碰撞、横截面。 第二单元 简单物体的转动能量和转动惯量、刚体在水平和倾斜平面上的平动、转动和运动的综合、陀螺运动的简单处理。弹性常数之间的关系、梁的弯曲和圆柱体的扭转。 第三单元 中心力、两粒子中心力问题、减小质量、相对和质心运动、万有引力定律、开普勒定律、行星和卫星的运动、地球静止卫星。 第四单元 简谐运动、SHM 的微分方程及其解、复数符号的使用、阻尼和强迫振动、简谐运动的合成。波动的微分方程、流体介质中的平面行进波、波的反射、反射时的相变、叠加、驻波、压力和能量分布、相速度和群速度。
摘要 - 使用频谱传感和射频识别技术的新结构健康监测(SHM)计划提出了衡量结构性应变。与高端设备相比,涉及通用软件无线电外围设备(USRP)的拟议程序为这类测量方法提供了一种经济的替代方案,而该方法可以实现更灵活的数据处理。应变检测的整体系统由三个主要部分组成:1)斑块天线作为应变的传感器; 2)USRP作为测量工具; 3)用于数据处理的计算机。由于天线长度的变化,斑块天线可用于通过探视谐振频移来测量结构应变。在本文中,我们使用应用于USRP的优化能量检测算法来检测贴片天线的光谱,最终测量结果表明,斑块天线传感器具有应变敏感性1.7678 kHz/ µε,而测量值的误差和应力值之间的误差和2.4443的真实值是2.4443%的计算机。
机身数字孪生螺旋 1 的三个主要演示目标如下:(1) 演示集成的“CBM+SI”流程,作为当前飞机结构完整性计划 (ASIP) IAT 计划流程的潜在替代方案。演示将包括使用情况估计、选定的“热点” SHM 以及经常更新的损伤容限和风险分析。将使用真实美国空军飞机结构模块的两次全尺寸疲劳试验代替飞行试验。将同时进行“常规” IAT 计划方法和相关的全尺寸疲劳试验,以方便对这两种方法进行比较。(2) 增强内部在 CBM+SI 技术重点领域和 ASIP 工程流程方面的专业知识。实现这一目标将使工程师能够看到他们的技术在 ASIP 流程中的位置,并了解多个学科如何相互作用。(3) 创建持久的分析集成框架和测试设置程序,以评估成熟的其他分析和监控技术。这将提供 CBM+SI“测试平台能力”和第一代机身数字孪生。
摘要:心肌重塑是由于急性或慢性病理学的应激增加而发展的。压力心形态(SHM)是一个新的描述,代表了由于高血压后负荷增加而导致的情绪压力和慢性压力引起的基础层肥大(BSH)。急性应激心肌病(ASC)和高血压可以在临床实践中一起进行。因此,关于该特定位置的几何和功能方面,急性和慢性应激刺激下的隔膜基础。我们和其他研究小组的发现支持高血压介导的心肌参与可以在ASC病例中预先存在。除了经常见到的主要基础之外,在高血压和ASC中都检测到了超动力组织反应。此外,高血压是复发性ASC的负责任因素。最具支持性的前瞻性发现是BSH,其中超收入基础比在生理锻炼和跨压力超负荷的小动物中使用微型成像在生理锻炼和压力超负荷下需要更长的时间来形态学。然而,用根尖气球进行的心脏代偿性可以掩盖可能的潜在高血压疾病。实际上,由于在急性发作中被接受为急性冠状动脉综合症,因此无法在急诊单元中评估以前的高血压病史或节段性分析的足够时间。运动高血压作为血压变异性的典型形式是生理运动和病理学的总和增加了血压,并导致死亡率增加。SHM的其他支持结果是高血压BSH中的应力评分增加,并且在过度交感神经过度驱动(如嗜铬细胞瘤)中存在相似的组织方面,这可能导致高血压疾病和ASC。高血压在高应力评分的患者中并不罕见,并且会导致ASC的重复攻击,从而支持情绪成分的重要作用以及同时多种压力源引起的潜在危险。在当前的审查中,讨论了多种压力源对分段或全球心肌重塑的影响以及同时讨论多个压力源的危险潜力。结果,可以在多种压力源的患者中召回偶然确定的节段重塑,并在预防全球重塑和心力衰竭的预防中对高血压和慢性压力的早期和综合治疗有助于。
文件系统 大小 已用 可用 使用率% 挂载于 udev 189G 0 189G 0% /dev tmpfs 38G 9.4M 38G 1% /run /dev/sdb2 47G 28G 18G 62% / tmpfs 189G 0 189G 0% /dev/shm tmpfs 5.0M 0 5.0M 0% /run/lock tmpfs 189G 0 189G 0% /sys/fs/cgroup /dev/sdb4 392G 123G 250G 34% /data /dev/sdb3 239M 163M 76M 69% /boot/efi /dev/sdc3 166G 5.6G 152G 4% /var /dev/sdc1 671G 102G 536G 16%/数据/maglev/srv /dev/sdc2 923G 175G 702G 20%/数据/maglev/srv/maglev-system /dev/sdd1 5.2T 127G 4.9T 3%/数据/maglev/srv/ndp glusterfs-brick-0.glusterfs-brick:/default_vol 923G 187G 699G 22%/mnt/glusterfs/default_vol glusterfs-brick-0.glusterfs-brick:/ndp_vol 5.2T 181G 4.9T 4%/mnt/glusterfs/ndp_vol tmpfs 38G 0 38G 0%/运行/用户/1234 maglev@maglev-master-10-10-10-10:~$
Filesystem Size Used Avail Use% Mounted on udev 189G 0 189G 0% /dev tmpfs 38G 9.4M 38G 1% /run /dev/sdb2 47G 28G 18G 62% / tmpfs 189G 0 189G 0% /dev/shm tmpfs 5.0M 0 5.0M 0% /run/lock tmpfs 189G 0 189G 0% /sys/fs/cgroup /dev/sdb4 392G 123G 250G 34% /data /dev/sdb3 239M 163M 76M 69% /boot/efi /dev/sdc3 166G 5.6G 152G 4% /var /dev/sdc1 671G 102G 536G 16% /data/maglev/srv /dev/sdc2 923G 175G 702G 20%/data/galev/srv/maglev-system/dev/sdd1 5.2t 127g 127g 4.9t 3%/data/data/glusterfs-brick-brick-brick-0.glusterfs-0.glusterfs-brick-:/default_vol_vol_vol_vol_vol_vol 923g 187g 699g 699g 22%/mmnt/mmnt/glufts/ligultf glusterfs-brick-0.glusterfs-brick:/ndp_vol 5.2t 181g 4.9t 4%/mnt/mnt/glusterfs/ndp_vol tmpfs 38g 0 38G 0%/run/run/user/user/user/1234 Maglev@maglev-master-master-master-master-10-10-10-10-10:$
本文回顾了影响高层建筑结构完整性的因素。研究重点是探索设计考虑因素、材料选择、施工技术和维护策略,以确保这些结构的安全性、稳定性和可持续性。讨论的关键设计考虑因素包括风荷载、抗震设计、重力荷载评估以及结构性能与建筑设计的整合。选择合适的材料(如混凝土、钢材、复合系统和先进材料)对于结构完整性也至关重要。此外,本文还强调了建筑信息模型 (BIM) 技术、预制、模块化施工和滑模成型等施工技术在实现结构效率和安全性方面的重要性。最后,强调了维护策略的重要性,包括结构健康监测 (SHM) 系统、定期检查、改造技术和生命周期管理,以确保高层建筑的长期耐久性和弹性。通过解决这些多方面的方面,本综述旨在促进高层建筑设计和施工实践知识的进步。