利用并行性是在内存数据库引擎中执行低延迟的游戏的名称。最突出的是,现代通用CPU继续主导计算单元的领域,它通过两个面向数据的平行范式提供了高度计算的能力:MIMD和SIMD。不幸的是,由于两个平行范式都表现出不同的编程模型和内存访问模式,因此以组合方式利用这两种模型都是具有挑战性的。但是,CPU上SIMD的最新硬件进步放宽了对SIMD友好内存访问模式的限制。与纯线性访问模式的最新技术相比,替代访问模式的可用性和性能已显着提高。正如我们将在本文中所展示的那样,这些进步为统一的并行化方法铺平了道路,该方法以联合方式利用MIMD和SIMD,为有效的分析查询处理提供了一种新颖而有希望的方式。
(i) 细粒度 SIMD:这些实际上是处理实际上由大得多的组件组成的小得多的组件的详细描述。 (ii) 粗粒度 SIMD:这些系统由较少的组件组成,这些组件显然比原始组件多,但比细粒度 SIMD 小得多,但组件的大小比系统的细粒度子组件大得多(高/多)。细粒度和粗粒度 SIMD 架构之间的差异: