尤其是对于大型物理实验,通常需要对探测器进行深度定制。强有力的论据支持在 2.5D / 3D 集成配置中使用定制传感层,针对特定应用进行优化。
由5.9 t活性LXE(166 K)填充的TPC直接检测DM。wimps与LXE核的相互作用产生闪烁光(46ɣ /kev @ 178 nm)。253(顶部)和241(底部)Hamamatsu R11410-21低背景低温PMTS由Hamamatsu和Xenon合作共同开发。PMT选择在操作过程中几乎10%的PMT失败。5%高脉冲率,<5%的光泄漏。1.5 kV偏置,以避免不稳定性,例如瞬态闪光灯。对于所有PMT,在LXE温度下测量了约40 Hz的典型暗计数。
摘要 BETA 专用集成电路 (ASIC) 是一种完全可编程的芯片,旨在放大、整形和数字化多达 64 个硅光电倍增管 (SiPM) 通道的信号,功耗约为 ∼ 1 mW/通道。由于其双路增益,BETA 芯片能够解析信噪比 (SNR) >5 的单个光电子 (phes),同时实现 ∼ 4000 phes 的动态范围。因此,BETA 可以为太空任务和其他应用中的最大速率低于 10 kHz 的 SiPM 读出提供经济高效的解决方案。在本研究中,我们描述了 BETA ASIC 的主要特性,并对其 16 通道版本的性能进行了评估,该版本采用 130 nm 技术实现。ASIC 还包含两个鉴别器,可以提供触发信号,对于 10 phes,时间抖动低至 400 ps FWHM。对于高达 15 位的动态范围,电荷增益测量的线性误差小于 2%。
深层地下中微子实验 (DUNE) 的远探测器 (FD) 将配备液氩时间投影室 (LArTPC),其中闪烁光将由适合低温应用的硅光电倍增管探测。在 DarkSide 实验的要求推动下,FBK 开发了一种用于低温应用的 SiPM 技术 (NUV-HD-Cryo SiPM),该技术的特点是在低温下具有极低的暗噪声,约为几 mHz/mm2,后脉冲概率低,并且淬灭电阻随温度的变化有限。在 DUNE 合作框架内,NUV-HD-Cryo 技术得到了进一步开发,通过增加深沟槽隔离 (DTI) 的数量来获得具有高增益但串扰有限的设备,目的是为 DUNE 读出模块提供更好的信噪比。大型物理实验通常需要具有最高性能的设备,并在短时间内以低到中等的产量完成紧张的实验计划。在 FBK,我们开发了一个小型供应链,其中包括一家使用 FBK 技术制造 SiPM 的外部代工厂和一家外部封装公司,能够提供中等批量的封装硅探测器。在这项工作中,我们将从 SiPM 的击穿电压、暗电流和正向电阻的均匀性以及 SiPM 板封装的质量评估方面报告 NUV-HD-Cryo 技术的性能和 DUNE 实验的 FBK SiPM 生产状态。
摘要:太空和地面任务测量大气中宇宙射线、伽马射线和中微子产生的大面积空气簇射,需要在不同时间尺度上探测非常微弱和强烈的紫外-可见光。新一代硅光电倍增管 (SiPM) 的特性适合于此目的,尤其是对于需要以下特性的太空任务:耐光、重量轻、功耗低和固有增益高。SiPM 的高性能探测能力使其有望用于电荷积分(需要信号中的总电荷量)以及光子计数(需要极高的光电探测器灵敏度,如切伦科夫和荧光光探测)。同时在两种模式下操作 SiPM 的能力实际上严格取决于前端电子设备 (FEE) 的设计。最重要的挑战是找到适当的平衡和可行的解决方案,以便管理带有 FEE 的 SiPM,使其能够同时高效地进行光子计数和电荷积分。在本文中,我们介绍了 RADIOROC,这是一种新型 ASIC,能够同时在两种模式下工作:这样它就能够获取切伦科夫和荧光信号。RADIOROC 将用于创新实验 MUCH,这是一种使用大气切伦科夫成像技术的望远镜,用于探测来自 μ 子切伦科夫光,用于火山射线照相术(μ 射线照相术)以及任何需要对地质或工程结构进行非侵入性射线照相检查的地方,即使是相当大的结构。
SiPM的传统应用是ToF-PET,此外,随着SiPM性能的不断提升,其正在多个大物理实验的升级中接受评估。
摘要:光子探测器获得精确的时序信息的潜力在许多领域,PET和CT扫描仪中在医学成像和粒子物理探测器等等等中的重要性越来越重要。的目标是增加pet扫描仪的敏感性,并通过对每个事件的真实空间点以及未来粒子加速器设定的限制来进一步飞跃,需要进一步飞跃基于闪烁器的电离仪,最终将picoseConds Restolution延伸到几个picoseconds submevs submev subs Mev subs subs subme sev subme subs submev subme sups subme sev subs subs subs subs subsove suble of pet扫描仪的敏感性。尽管几个制造商在过去十年中取得了令人印象深刻的进展,但SIPMS的单个光子时间分辨率(SPTR)仍在70-120 PS FWHM范围内,而10 ps的值则是10 ps或更少的值。这样的步骤需要与传统方法和新技术的发展进行中断。将纳米素化学的非凡潜力与现代微电子学和3D电子整合所采用的新方法相结合的可能性为开发新一代基于过度的sipms的新观点和空前的光相位效率和计时分辨率开发了新一代的观点。
FBK:基于 IPCEI 的 SiPM 技术 自动驾驶和/或辅助驾驶将提高汽车的能耗效率,变得更加环保。“智能”汽车背后是什么?不仅是人工智能,还有大量的传感器,其中包括 FBK 开发的基于 IPCEI 的 SiPM 技术。这些传感器使安装在汽车上的 LiDAR(光检测和测距)摄像头能够识别周围的情况并防止事故发生。如何更好地了解宇宙及其起源...... 旨在更好地了解中微子的性质、宇宙中罕见事件和物质起源的项目,如 DUNE 和 nEXO,是使用基于最先进的 SiPM/SPAD 的极其灵敏的辐射传感器进行的一些物理实验。借助 IPCEI 工业应用研究开发的 3D SiPM 集成方面最先进的成果使科学向前迈进了一步。
固态技术的进步导致硅光电塑料(SIPM)的使用增加,用于粒子物理仪器中的闪烁光检测[1]。,正在积极考虑使用SIPMS用于直接检测暗物质(例如拟议的XLZD实验[2])的实验中,并潜在地升级到Lux-Zeplin(LZ)检测器[3-5]。与光电倍增管(PMTS)相比,吸引力是显着的:放射性障碍的大小和数量更紧凑,对磁场的弹性,较低的工作电压以及自然像素化的光敏感区域,可以改善事件重建。作为一个简短的描述,SIPM是雪崩光电二极管的像素化阵列:P-n连接反向偏向于其击穿电压。当像素检测到一级光子时,所得的Geiger模式的电荷载体也会发出次级光子[6,7]。这种副作用是硅雪崩设备的通用[8]。这些二次光子本身可以通过SIPM中的不同像素检测到,因此产生了过量的,虚假的信号,这种效果称为光串扰。1因此,SIPMS的缺点是以串扰,光子检测形式的过量信号的固有产生,这种效应以设备增益非线性地缩放[10,11]。光串扰只要内部包含在原始设备中,就可以轻松地校准。在这种情况下,效果通常称为内部串扰。这被称为外部串扰。如果在检测器中仪器进行了多种s尖,则可能发生不同设备之间的串扰。因为次级光子已经逃脱了原始设备并被另一个SIPM检测到,因此校准不再直接。以这种方式,不幸的是,SIPM表现为脉冲手电筒。的确,在单个设备水平上不可能进行外部串扰的校准,并且只能由粒子探测器系统中的其他设备进行测量。