和生物利用度。制备的空白TF-SLNs显示出最小的细胞毒性,而TF-CRC-SLNs与单独的CRC-SLN相比表现出显着的体外抗增殖活性。与单独使用的SLN或单独使用纯药物相比,发现TF-CRC-SLN的细胞摄取明显更高(P <0.05/= 0.01)。生物偶联的TF-CRC-SLN还显示出对CRC-SLN和CRC解决方案的早期凋亡和晚期凋亡或早期坏死人群(分别为6.4%和88.9%)。最重要的是,与对照组相比,在携带前列腺癌的小鼠中对患有前列腺癌的小鼠的TF-CRC-SLNS研究显示出明显的肿瘤消退(392.64 mm 3,p <0.001)。这项工作的发现鼓励了未来的研究,并进一步研究了生物偶联SLN对癌症治疗的潜力的进一步研究。
固体脂质纳米粒 (SLN) 已成为一种卓越的药物输送纳米胶体系统。本综述介绍了有关 SLN 各个方面的当代信息,即 SLN 形态、结构特征、制备方法及其特性。这种载体系统可以提高几类药物的治疗效果。SLN 目前的用途包括癌症治疗、传染病、糖尿病、中枢神经系统疾病、心血管疾病、药妆等。SLN 有助于改善药代动力学并改变药物释放。表面改性的前景、增强对各种生物屏障的渗透性、抵抗化学降解的能力以及同时封装两种或多种治疗剂的可能性已引起人们对 SLN 的普遍关注。同时,本综述强调了与该载体系统相关的最新研究趋势。
本研究的目的是制备和表征用于治疗前列腺癌的载多西紫杉醇 (DTX) 的靶向固体脂质纳米粒 (SLN)。通过将茴香酰胺 (Anis) 配体定位在 SLN 表面,可以与前列腺癌细胞上过表达的 σ 受体相互作用,实现了目标。通过高剪切均质化和超声波处理法制备负载 DTX 的 SLN,并通过实验设计进行优化。最佳 DTX-SLN 的平均粒径和包封率分别为 174 ± 9.1 nm 和 83 ± 3.34%。差示扫描量热法的结果表明,DTX 以无定形状态分散在纳米载体中。扫描电子显微镜 (SEM) 图像证实了纳米粒子的纳米级尺寸和球形形状。细胞毒性研究表明,游离药物、DTX-SLN 和 DTX-SLN-Anis 的 IC 50 在 PC3 细胞系中分别为 0.25 ± 0.01、0.23 ± 0.02、0.12 ± 0.01 nM,在 HEK293 细胞系中分别为 20.9 ± 3.89、18.74 ± 7.43 和 14.68 ± 5.70 nM。与 DTX-SLN 和游离药物相比,靶向 DTX-SLN-Anis 对前列腺癌细胞的作用更有效。本研究的结果表明,靶向 SLN 中装载的抗癌药物可能是一种有前途的癌症治疗方法。此外,进行体内研究将对这些发现进行补充。
文章历史:提交日期:2020 年 3 月 6 日修订日期:2020 年 4 月 10 日接受日期:2020 年 5 月 11 日摘要固体脂质纳米粒子 (SLN) 于 1991 年底首次推出,作为已知的旧胶体载体(如乳液、脂质体和聚合物微粒和纳米粒子)的替代转运系统。SLN 具有经典结构的优点和潜力,但避免了它们的一些常见和已知的缺点。本文回顾了 SLN 的生产技术、药物的整合、负载能力和药物的释放,特别强调了药物释放技术。与将 SLN 引入制药行业有关的问题,例如赋形剂的地位。从一开始,在过去十年中,脂质纳米粒子 (LNP) 就引起了特别广泛的关注。纳米结构脂质转运体强脂质纳米颗粒 (SLN) 成为由脂质形成的两种最重要的纳米颗粒形式。SLN 的设计能够克服某些类型的胶体载体的限制,如脂质体、乳液和聚合物纳米颗粒,因为它们具有良好的一面,如强大的排放曲线和引导药物分布,具有最完美的物理健康。NLC 将在下一代脂质纳米颗粒中改进 SLN,以增强稳定性、安全性和容量负载。本文重点介绍使用均质化和溶剂蒸发等先进生产技术减少毒性作用的方法。因为它为固体脂质纳米颗粒提供了便利
越来越多的证据表明,补充维生素D(VITD)在解决广泛的VITD缺乏方面具有有益的作用,但目前使用的VITD3配方表现出较低的生物利用度和毒性约束。因此,研究了研究这些问题以解决这些问题以解决这些问题。PLGA NP提出了74或200 nm,缔合效率(AE)分别为68%和17%,vitd3的快速爆发释放。SLN和NLC均表现出较高的多分散性和较大的NPS大小,约500 nm,在NLC的情况下,可以使用热高压均质化将其降低至200 nm左右。VITD3分别在SLN和NLC中有效加载,AE分别为82%和99%。尽管SLN显示出爆发释放,但NLC允许持续释放VITD3近一个月。此外,NLC在4℃下最多一个月的VITD3载荷显示出较高的稳定性,并且对INS-1E细胞没有细胞毒性作用,最高为72 h。用VITD3预处理的INS-1E细胞观察到了葡萄糖依赖性胰岛素分泌的趋势增加(约30%)。以自由形式和在NLC上加载后始终观察到这种效果。总体而言,这项工作有助于进一步阐明VITD3的合适递送系统以及该代谢产物对β细胞功能的影响。
大学,B.G Nagar,卡纳塔克邦571448,印度摘要脂质体,聚合物纳米颗粒和乳液是其他流行的胶体载体的替代品。由于其优势,固体脂质纳米颗粒是在1990年代初开发的,包括受控药物释放,聚焦药物输送和出色的耐用性。在本文中总结了许多用于制造固体脂质纳米颗粒和赋形剂(包括膜承包商技术)的方法,以及它们可能的好处和缺点。固体脂质纳米颗粒(SLN)稳定性依赖于随着时间的推移维持粒径,药物封装和完整性。表面活性剂和脂质等赋形剂会影响稳定性,从而阻止聚集和氧化。干燥技术(例如喷雾干燥和冻干)通过将SLN转换为固体形式,增强稳定性,而脂质组成和药物脂质兼容性是至关重要的因素。因此,对所采用的工具技术以及与SLN制造相关的困难进行了彻底检查。特定的重点放在SLN中的SLN释放模式和药物整合模型上。详细介绍了SLN的主要用途,包括靶向药物输送以及SLN评估中使用的分析方法。这项工作的主要目的是对固体脂质纳米颗粒的详细概述,包括生产方法,表征和给药途径。还包括对SLN输送机制的组成部分和载体的体内命运的讨论。本文的主要关注点是固体脂质纳米颗粒(SLN)。关键字:固体脂质纳米颗粒,固体脂质,表面活性剂,胶体药物载体和药物掺入。引言在生物技术,生物医学工程和纳米技术等领域的进步显着促进了新型药物输送系统的快速增长。纳米技术被广泛用于几种最现代的配方技术中,这需要携带API的纳米结构的发展。纳米技术涉及从1到100纳米的结构进行研究和使用。使用受管制和专注的药物输送机制,纳米技术的主要目标是尽快诊断出实际和迅速的诊断,并像实用性一样有效,安全地对待。纳米颗粒,固体脂质纳米颗粒,纳米悬浮,纳米乳胶,纳米晶体和其他药物输送系统是纳米技术原理创建的一些最受欢迎的药物。固体脂质纳米颗粒(SLNS)于1991年首次开发,比传统胶体载体(如乳液,脂质体和聚合物微粒和纳米颗粒)具有优势。(Khatak等,N.D.2013)
在药物递送方面,人脑的复杂结构将其定义为最无法访问的器官之一。血脑屏障(BBB)代表了一个微血管网络,涉及血液和中枢神经系统(CNS)之间运输物质的微血管网络(CNS) - 使营养素的进入并同时限制了病原体和毒素的流入。然而,它作为中枢神经系统保护屏蔽的作用也限制了药物进入大脑的机会。由于许多药物由于不合适的物理学特征(即高分子量,水溶性等)而无法越过BBB。),已经制定了不同的技术策略,以确保足够的药物生物利用度。其中,固体脂质纳米颗粒(SLN)和纳米结构的脂质载体(NLC)由于其脂质性质而成为有前途的方法,从而促进了他们的大脑吸收,小尺寸,以及随后的功能化以实现目标递送的可能性。评论的重点是将SLN和NLC作为纳米载体进行大脑输送,概述了BBB的生理因素以及影响这一过程的纳米载体的物理化学特征。这一领域的最新进展也得到了总结。
纳米颗粒药物输送系统已成为治疗中枢神经系统疾病的尖端方法。本综述讨论了利用纳米颗粒将药物递送到大脑方面的进步和机会,重点是增强功效,降低副作用并改善患者结果的潜力。基于脂质的纳米载体,例如脂质体,固体脂质纳米颗粒(SLN)和胶束,在神经系统条件下广泛使用。对治疗神经退行性疾病的创新药物递送方法的需求不断增长,例如帕金森氏症和阿尔茨海默氏症,这在很大程度上是由于血液脑屏障和p-糖蛋白的潜在治疗失败,这会导致脑功能逐渐逐渐丧失。纳米技术的进步可以通过改善活跃的医学运动的交付并创建改善主动药物输送的纳米材料来帮助克服这些局限性。
A. Grillone * , E. Redolfi Riva * , S. Moscato ** , R. Sacco *** , V. Mattoli * and G. Ciofani * * Italian Institute of Technology, CMBR@SSSA, Pontedera, Italy, gianni.ciofani@iit.it ** University of Pisa, Department of Clinical and Experimental Medicine, Pisa, Italy *** Pisa University意大利PISA胃肠病学系的医院摘要索拉非尼是一名抗癌药,该药物已获得食品和药物管理局的批准,用于治疗肝细胞癌和晚期肾癌。索拉非尼的临床应用有望,但受其不溶性和严重有毒副作用的限制。这项研究的目的是开发和表征索拉非尼负载的磁性纳米电炉,以在远程磁场的帮助下将药物输送到疾病部位。索拉非尼和超帕磁铁氧化铁纳米颗粒通过使用粘胶棕榈酸酯作为脂质基质将固体脂质纳米颗粒(SLN)封装在固体脂质纳米颗粒(SLN)中。在人肝癌HEPG2的体外评估生物学作用。我们的结果证实了可以通过索拉非尼细胞毒性作用杀死能够杀死癌细胞的稳定SLN的可能性,并得益于该药物的磁性积累来增强/定位在所需区域。关键字:固体脂质纳米颗粒,磁性纳米颗粒,索拉非尼,HEPG2 1简介多激酶抑制剂(MKI)Sorafenib(TradeNamenexavar®,Bayer)最近已获得FDA批准的,FDA批准了不可超过的肝癌和晚期肾carcinoma和先进的肾carccinoma(HCC)[1 1] [HCCC)[HCCC)]克服后一种缺点可能是最重要的改进之一临床前研究表明,索拉非尼通过几种抑制肿瘤血管生成并诱导肿瘤细胞凋亡的机制作用[2]。尽管证明了其生存益处,但索拉非尼仍可以导致重要的副作用,包括手和脚综合征,腹泻和高血压[3]。这项研究的目的是开发能够有效,有选择性地将索拉非尼提供给癌症病变的磁性纳米型,这要归功于磁性纳米颗粒介导的物理指导。拟议的系统可以通过将药物集中在目标位点的对应性中,可以选择性地传递索拉非尼。它的使用可以提高治疗的疗效,以避免前提到的副作用,例如药物as特异性生物分布,这可能会使健康组织暴露于药物作用。
摘要 人类与致命疾病的斗争自古以来就一直在持续。科学技术在对抗这些疾病方面的贡献不容忽视,这完全归功于新方法和产品的发明,它们的尺寸范围从微米扩展到纳米。最近,纳米技术因其诊断和治疗不同癌症的能力而受到越来越多的关注。不同的纳米粒子已被用于规避与保守的抗癌输送系统相关的问题,包括其非特异性、副作用和突发释放。这些纳米载体包括固体脂质纳米粒子 (SLN)、脂质体、纳米脂质载体 (NLC)、纳米胶束、纳米复合材料、聚合物和磁性纳米载体,它们带来了抗肿瘤药物输送的革命。纳米载体提高了抗癌药物的治疗效果,在特定部位更好地积累并持续释放,提高了生物利用度,并绕过正常细胞导致癌细胞凋亡。在这篇综述中,简要讨论了癌症靶向技术和纳米粒子的表面改性,以及可能面临的挑战和机遇。可以得出结论,了解纳米医学在肿瘤治疗中的作用具有重要意义,因此,该领域的现代进展对于肿瘤患者的繁荣今天和富裕未来至关重要。