“ Cantidatus Phytoplasma Fraxini”的Ashy1菌株起源于伊萨卡(美国纽约,美国纽约),并于白灰(Fraxinus Americana),并被转移到Catharanthus Roseus(5)。使用Dneasy血液和组织试剂盒(Qiagen,Hilden,Germany)制备了由感染的玫瑰花芽芽孢杆菌和叶子材料制备的测序模板。使用SMRTBELL PREP KIT 3.0(美国加利福尼亚州PACBIO)的SMRTBELL PREP KIT 3.0(美国)而没有其他DNA片段化制备了用于单分子实时(SMRT)的高保真库。在Max Planck Genome-Centre(德国科隆)的续集IIE设备(PACBIO)上对片段文库进行了测序,其结合KIT 2.0(PACBIO)和续集II测序套件2.0(PACBIO)。通过使用BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)和一个数据核定的数据,通过BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)v.6.18.2(6.18.2(6.18.2)(6)(6)(6.6.18.2(6)的候选,分类构造分类为“ candidatus phyto plasma”属,其中11,518个读取(5834中的N 50)被分配给“念珠菌Phyto等离子体”属。 GenBank的Tus Phytoplasma”和Catharanthus Roseus(登记:2024年1月)。 使用PACBIO-HIFI选项和估计的基因组大小为600 kb,将其余的读数与CANU v2.2(7)组装在一起。 实现了一个连续的圆形序列,具有67.17倍的覆盖率。 通过爆炸分析确认了> 10 kb的序列重叠。 随后,使用Artemis V18.2.0(8)手动删除序列重叠。 在Rast V2.0(9)中进行了完整染色体的注释,然后在Artemis v18.2.0(8)中进行手动策划,DNAA将DNAA设置为染色体的第一个基因。 未发现质粒。通过BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)v.6.18.2(6.18.2(6.18.2)(6)(6)(6.6.18.2(6)的候选,分类构造分类为“ candidatus phyto plasma”属,其中11,518个读取(5834中的N 50)被分配给“念珠菌Phyto等离子体”属。 GenBank的Tus Phytoplasma”和Catharanthus Roseus(登记:2024年1月)。使用PACBIO-HIFI选项和估计的基因组大小为600 kb,将其余的读数与CANU v2.2(7)组装在一起。实现了一个连续的圆形序列,具有67.17倍的覆盖率。通过爆炸分析确认了> 10 kb的序列重叠。随后,使用Artemis V18.2.0(8)手动删除序列重叠。在Rast V2.0(9)中进行了完整染色体的注释,然后在Artemis v18.2.0(8)中进行手动策划,DNAA将DNAA设置为染色体的第一个基因。未发现质粒。使用BUSCO的151个单拷贝直系同源物(94%)的比较支持了注释的完整性(10)。在染色体组装中未考虑的读数对额外的分类套筒进行了进一步的分类,并筛选了ASHY1的肉体外DNA。默认参数用于所有软件,除非另有说明。
1. Ferrarini M、Moretto M、Ward JA、Surbanovski N、Stevanovic V、Giongo L、Viola 88 R、Cavalieri D、Velasco R、Cestaro A、Sargent DJ。2013 年。对 89 PacBio RS 平台进行叶绿体基因组测序和从头组装的评估。BMC 基因组学 14:670。91 2. Stadermann KB、Weisshaar B、Holtgräwe D。2015 年。仅 SMRT 测序甜菜 (Beta vulgaris) 叶绿体基因组的从头组装。BMC 93 生物信息学 16:295。 94 3. Pucker B、Holtgräwe D、Stadermann KB、Frey K、Huettel B、Reinhardt R、95 Weisshaar B。2019 年。染色体水平序列组装揭示了拟南芥 Nd-1 基因组及其基因集的结构。PLoS One 97 14:e0216233。98 4. Altschul SF、Gish W、Miller W、Myers EW、Lipman DJ。1990 年。基本局部比对搜索工具。分子生物学杂志 215:403-410。100 5. Koren S、Walenz BP、Berlin K、Miller JR、Bergman NH、Phillippy AM。2017 年。Canu:通过自适应 k-mer 加权和 102 重复分离实现可扩展且准确的长读组装。基因组研究 27:722-736。103 6. Jansen RK、Kaittanis C、Saski C、Lee SB、Tomkins J、Alverson AJ、Daniell H. 2006. 基于完整叶绿体基因组序列的葡萄科(Vitaceae)系统发育分析:分类单元抽样和系统发育方法对解决蔷薇科间关系的影响。BMC 进化生物学 6:32。107 7. Goremykin VV、Salamini F、Velasco R、Viola R. 2009. 葡萄的线粒体 DNA 和猖獗的水平基因转移问题。分子生物学与进化 26:99-110。110 8. Wick RR、Schultz MB、Zobel J、Holt KE。 2015. Bandage:从头基因组组装的交互式可视化。生物信息学 31:3350-2。112 9. Wheeler TJ、Eddy SR。2013. nhmmer:使用概要 HMM 进行 DNA 同源性搜索。113 生物信息学 29:2487-2489。114 10. Chan PP、Lowe TM。2019. tRNAscan-SE:在基因组序列中搜索 tRNA 基因,第 1-14 页。在 Kollmar M(编辑)的《基因预测:方法和协议》中,116 2019/04/26 编辑,第 1962 卷。Springer New York,纽约。117 11. Lowe TM、Eddy SR。 1997. tRNAscan-SE:一种改进基因组序列中 118 种转移 RNA 基因检测的程序。核酸研究 25:955-964。119 12. Laslett D、Canback B。2004. ARAGORN,一种检测核苷酸序列中的 tRNA 基因和 120 种 tmRNA 基因的程序。核酸研究 32:11-16。121 13. Tillich M、Lehwark P、Pellizzer T、Ulbricht-Jones ES、Fischer A、Bock R、Greiner 122 S。2017. GeSeq - 多功能且准确的细胞器基因组注释。123 核酸研究 45:W6-W11。 124 14. Lohse M、Drechsel O、Kahlau S、Bock R. 2013. OrganellarGenomeDRAW——一套用于生成质体和线粒体基因组物理图谱并可视化表达数据集的工具。核酸研究 41:W575-581。127 15. Lohse M、Drechsel O、Bock R. 2007. OrganellarGenomeDRAW (OGDRAW):128 一个用于轻松生成高质量自定义质体和 129 线粒体基因组图形图的工具。当代遗传学 52:267-274。130