由于具有二进制和事件驱动架构,脉冲神经网络 (SNN) 在节能神经形态芯片方面具有巨大潜力。SNN 主要用于分类任务,但在图像生成任务方面的探索有限。为了填补这一空白,我们提出了一种脉冲扩散模型,该模型基于矢量量化离散扩散模型。首先,我们开发了一个带有 SNN 的矢量量化变分自动编码器 (VQ-SVAE) 来学习图像的离散潜在空间。在 VQ-SVAE 中,使用脉冲发放率和突触后电位对图像特征进行编码,并设计了一个自适应脉冲生成器来以脉冲序列的形式恢复嵌入特征。接下来,我们在离散潜在空间中执行吸收态扩散,并构建一个带有 SNN 的脉冲扩散图像解码器 (SDID) 来对图像进行去噪。我们的工作是第一个完全从 SNN 层构建扩散模型的工作。在 MNIST、FMNIST、KMNIST、Letters 和 Cifar10 上的实验结果表明,Spiking-Diffusion 优于现有的基于 SNN 的生成模型。我们在上述数据集上分别实现了 37.50、91.98、59.23、67.41 和 120.5 的 FID,与最先进的工作相比,FID 减少了 58.60%、18.75%、64.51%、29.75% 和 44.88%。我们的代码将在 https://github.com/Arktis2022/Spiking-Diffusion 上提供。
基于相对论均值场理论(RQMD.RMF)的相对论量子分子动力学是通过包括动量依赖性电位来表达的。在梁能量范围内,质子的定向和椭圆流的状态方程(EOS)的方程。3 <√snn <20 GEV。发现,导向的流量在高能量(√snn> 3 Gev)上很大程度上取决于光电位,在该 3 GEV上,在实验中没有信息可用。发现有效质量在饱和密度和光电位之间的相关性:有效质量的较小值需要较小的光电位强度来描述定向流数据。在√snn> 3 Gev的椭圆流的梁能量依赖性中也可以看到这种相关性,尽管其效果相当弱。另一方面,需要刚性EOS来描述较低能量的椭圆流。对PA碰撞的光电位的实验限制将在高能量下提供有关EOS的重要信息。在RQMD.RMF模型中很好地描述了定向的质子和椭圆流的质子,从√SNN = 2进行了很好的描述。3至8.8 GEV。 相比之下,要重现10 GEV高于10 GEV的导向流的崩溃,必须降低压力,这表明EOS在√snn = 10 GEV附近的软化。3至8.8 GEV。相比之下,要重现10 GEV高于10 GEV的导向流的崩溃,必须降低压力,这表明EOS在√snn = 10 GEV附近的软化。
摘要 神经形态架构实现生物神经元和突触,以使用脉冲神经元和生物启发学习算法来执行机器学习算法。这些架构节能,因此适用于资源和功率受限的环境中的认知信息处理,物联网 (IoT) 的传感器和边缘节点在这些环境中运行。为了将脉冲神经网络 (SNN) 映射到神经形态架构,先前的研究提出了基于设计时的解决方案,其中首先使用代表性数据离线分析 SNN,然后将其映射到硬件以优化一些目标函数,例如最小化脉冲通信或最大化资源利用率。在许多新兴应用中,机器学习模型可能会根据使用某些在线学习规则的输入而改变。在在线学习中,根据输入激励,在运行时可能会形成新连接或现有连接可能会消失。因此,可能需要将已映射的 SNN 重新映射到神经形态硬件以确保最佳性能。不幸的是,由于计算时间较长,基于设计时的方法不适合在每次学习周期后在运行时重新映射机器学习模型。在本文中,我们提出了一种设计方法,用于在运行时将基于在线学习 SNN 的应用程序的神经元和突触划分并映射到神经形态架构。我们的设计方法分为两个步骤 - 步骤 1 是一种逐层贪婪方法,将 SNN 划分为包含神经形态架构约束的神经元和突触簇;步骤 2 是一种爬山优化算法,可最大限度地减少簇之间传递的总尖峰,从而改善架构共享互连的能耗。我们进行实验,使用合成和真实的基于 SNN 的应用程序来评估我们算法的可行性。我们证明,与最先进的基于设计时的 SNN 划分方法相比,我们的算法将 SNN 映射时间平均缩短了 780 倍,而解决方案质量仅降低了 6.25%。
1山东大规模信息技术研究所,中国2个州主要的服务器和存储技术启动(北京)电子信息行业有限公司,中国北京,中国北京的抽象情感识别来自视觉信息的抽象情感识别是计算机视觉社区的重要研究主题。基于人工神经网络(ANN)的当前普遍解决方案表现出很高的精度,但计算消耗量很大。与ANN相比,尖峰神经网络(SNN)在生物学上更现实,并且在计算上有效。但是,将SNN用于视觉情感识别仍然是一个巨大的挑战,这主要是由于缺乏动态视觉传感器(DVS)的情感数据集和正确设计的SNN框架。在本文中,我们提出了一种生成DVS模拟数据集的方法,利用存在的情感识别数据集包含视频段。同时,采用了SNN框架及其对应ANN,以分别基于模拟DVS数据集和原始帧数据来完成动态视觉情感识别。所提出的SNN框架由一个功能提取模块组成,该模块基于输入的尖峰训练,投票神经元组模块,其中包含两组情绪神经元,以及一个将情感映射模块转换为情感上的尖峰到情感极性标签。结果表明,与ANN相比,提出的SNN可以实现更好的性能,其能耗只是ANN的四分之一。关键字峰值神经网络;动态视觉传感器;情绪识别1。简介
脉冲神经网络 (SNN) 是一种受大脑启发的神经网络,它模仿生物大脑,具体来说,模仿大脑的神经代码、神经动力学和电路。由于 SNN 在人类认知的生物现实建模和节能、事件驱动的机器学习硬件开发方面具有巨大潜力,因此引起了人工智能 (AI) 和神经科学界的极大兴趣 (Pei et al., 2019; Roy et al., 2019)。在图像处理、语音识别和机器翻译等广泛的 AI 领域都取得了重大进展。它们在很大程度上受到人工神经网络 (ANN) 在系统学习理论方面的进步、具有各种任务和数据集的明确基准、友好的编程工具[例如 TensorFlow (Abadi 等,2016) 和 Pytorch (Paszke 等,2019) 机器学习工具]和高效的处理平台[例如图形处理单元 (GPU) 和张量处理单元 (TPU) (Jouppi 等,2017)] 的推动。相比之下,SNN 在这些方面仍处于早期阶段。为了进一步发挥 SNN 的优势并吸引更多研究人员为该领域做出贡献,我们提出了神经科学前沿的研究主题,讨论 SNN 的主要挑战和未来前景,重点关注其“学习算法、基准测试、编程和执行”。我们相信,通过算法-硬件协同设计,SNN 将在节能机器学习设备的开发中发挥关键作用。该研究主题汇集了不同学科的研究人员,以展示他们在 SNN 方面的最新工作。我们收到了来自世界各地的 22 份投稿,并接受了 15 篇论文。接受的论文范围涵盖学习算法、模型效率、编程工具和神经形态硬件。
摘要 - 提供更现实的神经元动力学的启用神经网络(SNN)已证明在几个机器学习任务中实现了与人工神经网络(ANN)相当的性能。信息在基于事件的机制中以显着降低能源消耗的基于事件的机制而作为SNN中的峰值进行处理。但是,由于尖峰机制的非差异性质,训练SNNS具有挑战性。传统方法,例如通过时间的反向传播(BPTT),已显示出有效性,但具有额外的综合和记忆成本,并且在生物学上是难以置信的。相比之下,最近的作品提出了具有不同程度的地方性的替代学习方法,在分类任务中表现出成功。在这项工作中,我们表明这些方法在培训过程中具有相似性,同时它们在生物学合理性和性能之间进行了权衡。此外,这项研究研究了SNN的隐式复发性质,并研究了向SNN添加显式复发的影响。我们在实验上证明,添加显式复发权重可以增强SNN的鲁棒性。我们还研究了基于梯度和非梯度的对抗性攻击下本地学习方法的性能。索引术语 - 启用神经网络,本地学习,培训方法,集中的内核对齐,Fisher信息。
作为第三代神经网络,脉冲神经网络 (SNN) 因其生物学合理性和计算效率而备受关注,尤其是在处理各种数据集方面。受到神经网络架构进步的启发,注意力机制的整合导致了脉冲变压器 (Spiking Transformers) 的发展。这些在增强 SNN 能力方面显示出希望,特别是在静态和神经形态数据集领域。尽管取得了进展,但这些系统仍然存在明显的差距,特别是在脉冲自注意力 (SSA) 机制在利用 SNN 的时间处理潜力方面的有效性方面。为了解决这个问题,我们引入了时间交互模块 (TIM),这是一种新颖的基于卷积的增强功能,旨在增强 SNN 架构中的时间数据处理能力。 TIM 与现有 SNN 框架的集成无缝且高效,只需要极少的附加参数,同时显著提升了其时间信息处理能力。通过严格的实验,TIM 证明了其在利用时间信息方面的有效性,从而在各种神经形态数据集中实现了最先进的性能。代码可在 https://github.com/BrainCog-X/Brain-Cog/tree/main/examples/TIM 上找到。
摘要 - 急流尖峰神经网络(SNN)的灵感来自生物神经系统的工作原理,这些原理提供了独特的时间动态和基于事件的处理。最近,通过时间(BPTT)算法的错误反向传播已成功地训练了局部的SNN,其性能与复杂任务上的人工神经网络(ANN)相当。但是,BPTT对SNN的在线学习方案有严重的局限性,在该场景中,需要网络同时处理和从传入数据中学习。特别是,当BPTT分开推理和更新阶段时,它将需要存储所有神经元状态以及时计算重量更新。要解决这些基本问题,需要替代信贷分配计划。在这种情况下,SNN的神经形态硬件(NMHW)实现可以极大地利用内存计算(IMC)概念,这些概念(IMC)概念遵循记忆和处理的脑启发性搭配,进一步增强了他们的能量效率。在这项工作中,我们利用了与IMC兼容的生物学启发的本地和在线培训算法,该算法近似于BPTT,E-Prop,并提出了一种支持使用NMHW的经常性SNN推理和培训的方法。为此,我们将SNN权重嵌入了使用相位变更内存(PCM)设备的内存计算NMHW上,并将其集成到硬件中的训练设置中。索引术语 - 在线培训,尖峰神经网络,神经形态硬件,内存计算,相位变化内存我们使用基于PCM的仿真框架和由256x256 PCM Crossbar阵列的14NM CMOS技术制造的内存内计算核心组成的NMHW开发了模拟设备的精确度和瑕疵的方法。我们证明,即使对4位精确度也是强大的,并实现了32位实现的竞争性能,同时为SNN提供了在线培训功能,并利用了NMHW的加速收益。
尖峰神经网络(SNNS)代表了向更有能力和生物学上合理的计算模型转变的范式的最前沿。作为第三代神经网络技术,通过模拟生物神经加工的事件驱动的特征,SNN是传统机器智能系统的有前途的替代方案(Maass,1997)。SNN的吸引力是多方面的,它们的能力不仅可以在较低的功耗下运行,还可以以紧密反映大脑时空动态的方式进行计算(Roy等,2019)。SNN的基于尖峰的通信协议特别适合稀疏和异步计算,使其非常适合在神经形态芯片上部署。这些芯片旨在模仿大脑的神经结构,利用SNN的固有稀疏激活模式实现了显着的能量效率改善(Li等,2024; Frenkel等,2023; Merolla et al。; Merolla et al。,2014; Davies et al。,2018; davies et al。,2018; pei; pei et al an al et al et al。
摘要 - 次数不受约束的二进制优化(QUBO)问题成为一种有吸引力且有价值的优化问题,因为它可以轻松地转换为各种其他组合优化问题,例如图形/数字分区,最大值,SAT,SAT,Vertex,Vertex,Vertex,TSP,TSP等。其中一些问题是NP-HARD,并广泛应用于行业和科学研究中。同时,已经发现Qubo与两个新兴的计算范式,神经形态计算和量子计算兼容,具有巨大的潜力,可以加快未来的优化求解器。在本文中,我们提出了一种新型的神经形态计算范式,该计算范式采用多个协作尖峰神经网络来解决QUBO问题。每个SNN进行局部随机梯度下降搜索,并定期分享全球最佳解决方案,以对Optima进行元效力搜索。我们模拟了模型,并将其与无协作的单个SNN求解器和多SNN求解器进行比较。通过对基准问题的测试,提出的方法被证明在寻找QUBO Optima方面更有效。具体来说,它在无协作和单SNN求解器的情况下分别在多SNN求解器上显示X10和X15-20加速。索引术语 - 数字计算,尖峰神经网络作品,组合优化,QUBO