摘要 - 迅速的神经网络(SNN)已获得了能源有效的机器学习能力,利用生物启发的激活功能和稀疏的二进制峰值数据表示。虽然最近的SNN算法进步在大规模的计算机视觉任务上达到了高度准确性,但其能源效率主张依赖于某些不切实际的估计指标。这项工作研究了两个硬件基准平台,用于大规模SNN推断,即SATA和Spikesim。SATA是一种稀疏感应的收缩阵列加速器,而Spikesim评估基于内存计算(IMC)的模拟横杆实现的SNN。使用这些工具,我们发现,由于各种硬件瓶颈,最近的SNN算法工作的实际能效提高与它们的估计值有很大差异。我们识别并解决了在硬件上有效的SNN部署的关键障碍,包括在时间段上的重复计算和数据移动,神经元模块开销和SNN易受跨键bar非理想性的脆弱性。
摘要 — 迄今为止,脑启发式认知计算主要有两种方法:一种是使用多层人工神经网络 (ANN) 执行模式识别相关任务,另一种是使用脉冲神经网络 (SNN) 模拟生物神经元,以期达到与大脑一样高效和容错的效果。前者由于结合了有效的训练算法和加速平台而取得了长足的进步,而后者由于缺乏两者而仍处于起步阶段。与 ANN 相比,SNN 具有明显的优势,因为它们能够以事件驱动的方式运行,因此功耗非常低。最近的几项研究提出了各种 SNN 硬件设计方案,然而,这些设计仍然会产生相当大的能源开销。在此背景下,本文提出了一种涵盖设备、电路、架构和算法级别的综合设计,以构建用于 SNN 和 ANN 推理的超低功耗架构。为此,我们使用基于自旋电子学的磁隧道结 (MTJ) 设备,这种设备已被证明既可用作神经突触交叉开关,又可用作阈值神经元,并且可以在超低电压和电流水平下工作。使用这种基于 MTJ 的神经元模型和突触连接,我们设计了一种低功耗芯片,该芯片具有部署灵活性,可用于推理 SNN、ANN 以及 SNN-ANN 混合网络的组合——与之前的研究相比,这是一个明显的优势。我们在一系列工作负载上展示了 SNN 和混合模型的竞争性能和能源效率。我们的评估表明,在 ANN 模式下,所提出的设计 NEBULA 的能源效率比最先进的设计 ISAAC 高达 7.9 倍。在 SNN 模式下,我们的设计比当代 SNN 架构 INXS 的能源效率高出约 45 倍。 NEBULA ANN 和 SNN 模式之间的功率比较表明,对于观察到的基准,后者的功率效率至少高出 6.25 倍。索引术语 — 神经网络、低功耗设计、领域特定架构、内存技术
脉冲神经网络 (SNN) 的固有效率使其成为可穿戴健康监测的理想选择。SNN 通过事件驱动处理和稀疏激活进行操作,与传统 CNN 相比,功耗更低。这种节能方法与可穿戴设备的限制非常吻合,可确保长时间使用并最大程度地降低对用户体验的影响。另一种降低可穿戴健康监测 SNN 功耗的技术是近似计算。这种方法使资源受限的可穿戴设备能够实现计算效率,从而提高健康监测设备的使用寿命和可用性。
摘要 —脉冲神经网络 (SNN) 具有生物现实性,且由于其事件驱动机制而在低功耗计算方面具有实际应用前景。通常,SNN 的训练会在各种任务上遭受准确度损失,其性能不如 ANN。提出了一种转换方案,通过将训练好的 ANN 参数映射到具有相同结构的 SNN 来获得具有竞争力的准确度。然而,这些转换后的 SNN 需要大量的时间步骤,从而失去了节能优势。利用 ANN 的准确度优势和 SNN 的计算效率,提出了一种新颖的 SNN 训练框架,即逐层 ANN 到 SNN 知识提炼 (LaSNN)。为了实现具有竞争力的准确度和减少推理延迟,LaSNN 通过提炼知识而不是转换 ANN 的参数将学习从训练有素的 ANN 转移到小型 SNN。通过引入注意力机制,我们弥合了异构 ANN 和 SNN 之间的信息鸿沟,利用我们的分层蒸馏范式有效地压缩了 ANN 中的知识,然后有效地传输这些知识。我们进行了详细的实验,以证明 LaSNN 在三个基准数据集(CIFAR-10、CIFAR-100 和 Tiny ImageNet)上的有效性、功效和可扩展性。与 ANN 相比,我们实现了具有竞争力的 top-1 准确率,并且推理速度比具有类似性能的转换后的 SNN 快 20 倍。更重要的是,LaSNN 灵活且可扩展,可以毫不费力地为具有不同架构/深度和输入编码方法的 SNN 开发,从而促进其潜在发展。
尖峰神经网络(SNNS)代表了向更有能力和生物学上合理的计算模型转变的范式的最前沿。作为第三代神经网络技术,通过模拟生物神经加工的事件驱动的特征,SNN是传统机器智能系统的有前途的替代方案(Maass,1997)。SNN的吸引力是多方面的,它们的能力不仅可以在较低的功耗下运行,还可以以紧密反映大脑时空动态的方式进行计算(Roy等,2019)。SNN的基于尖峰的通信协议特别适合稀疏和异步计算,使其非常适合在神经形态芯片上部署。这些芯片旨在模仿大脑的神经结构,利用SNN的固有稀疏激活模式实现了显着的能量效率改善(Li等,2024; Frenkel等,2023; Merolla et al。; Merolla et al。,2014; Davies et al。,2018; davies et al。,2018; pei; pei et al an al et al et al。
摘要 — 随着智能系统的采用,人工神经网络 (ANN) 已变得无处不在。传统的 ANN 实现能耗高,限制了它们在嵌入式和移动应用中的使用。脉冲神经网络 (SNN) 通过二进制脉冲随时间分布信息来模拟生物神经网络的动态。神经形态硬件的出现充分利用了 SNN 的特性,例如异步处理和高激活稀疏性。因此,SNN 最近引起了机器学习社区的关注,成为低功耗应用的 ANN 的受大脑启发的替代品。然而,信息的离散表示使得通过基于反向传播的技术训练 SNN 具有挑战性。在这篇综述中,我们回顾了针对深度学习应用(例如图像处理)的深度 SNN 的训练策略。我们从基于从 ANN 到 SNN 的转换的方法开始,并将它们与基于反向传播的技术进行比较。我们提出了一种新的脉冲反向传播算法分类法,将其分为三类,即:空间方法、时空方法和单脉冲方法。此外,我们还分析了提高准确性、延迟和稀疏性的不同策略,例如正则化方法、训练混合和调整特定于 SNN 神经元模型的参数。我们重点介绍了输入编码、网络架构和训练策略对准确性-延迟权衡的影响。最后,鉴于准确、高效的 SNN 解决方案仍面临挑战,我们强调了联合硬件和软件共同开发的重要性。
脉冲神经网络 (SNN) 具有高度的生物合理性、丰富的时空动态和事件驱动计算,是一种有前途的节能人工神经网络 (ANN) 替代方案。基于替代梯度法的直接训练算法提供了足够的灵活性来设计新颖的 SNN 架构并探索 SNN 的时空动态。根据以前的研究,模型的性能高度依赖于其大小。最近,直接训练深度 SNN 在神经形态数据集和大规模静态数据集上都取得了巨大进展。值得注意的是,基于 Transformer 的 SNN 表现出与 ANN 相当的性能。在本文中,我们提供了一个新的视角,系统而全面地总结了训练高性能深度 SNN 的理论和方法,包括理论基础、脉冲神经元模型、高级 SNN 模型和残差架构、软件框架和神经形态硬件、应用和未来趋势。
尖峰神经网络(SNN)在推理过程中在功耗和事件驱动的属性方面具有显着优势。为了充分利用低功耗并提高了这些模型的效率,已经探索了修剪方法,以找到稀疏的SNN,而无需在训练后没有冗余连接。但是,参数冗余仍然会阻碍训练过程中SNN的效率。在人脑中,神经网络的重新布线过程是高度动态的,而突触连接在脑部消除过程中保持相对较少。受到此启发,我们在这里提出了一个名为ESL-SNNS的SNN的有效进化结构学习(ESL)框架,以实现从头开始实施稀疏的SNN训练。SNN中突触连接的修剪和再生在学习过程中动态发展,但将结构稀疏保持在一定水平。因此,ESL-SNN可以通过在时间上列出所有可能的参数来搜索最佳的稀疏连接。我们的实验表明,所提出的ESL-SNNS框架能够有效地学习稀疏结构的SNN,同时降低有限的精度。ESL-SNN仅达到0。在DVS-CIFAR10数据集上具有10%连接密度的28%抗性损失。我们的工作提出了一种全新的方法,可以通过生物学上合理的进化机制对SNN进行稀疏训练,从而缩小了稀疏训练和密集培训之间的明确攻击差距。因此,它具有SNN轻量级训练和低功耗和少量记忆使用情况的巨大潜力。
95个基于硬件的SNN是模拟或数字的。模拟SNN系统[20]显示的功耗低于数字SNN [21]。相比之下,数字SNN更加灵活,因此更适合原型制作,同时显示整体的设计时间更快,因此构成了初步实验和新一代神经假体设计的最佳选择。突出的SNN硬件平台是Merolla [22],Brainscales-2 [23],Spinnaker [24]和Loihi [25]。尽管其中一些系统呈现出移动版本,例如[26]用于BrainScales-2,但它们通常不适合嵌入式应用程序。在本手稿中,我们介绍了实时仿生Snn Biouthmus的功能,以实现独立的神经元和完全连接的网络,展示了系统集成,促进了多功能性和易用性。
人类大脑利用尖峰进行信息传输,并动态地重组其网络结构,以提高能源效率和认知能力的整个生命周期。从这种基于尖峰的计算中汲取灵感,已开发出尖峰神经网络(SNN)来构建模仿该效率的事件驱动的模型。尽管有这些进步,但在训练和推断期间,深SNN仍遭受过度参数化,与大脑自我组织的能力形成鲜明对比。此外,由于静态修剪比率保持最佳的修剪水平,现有的稀疏SNN受到挑战,导致下降或过度修剪。在本文中,我们为深SNN提出了一种新型的两阶段动态结构学习方法,旨在从头开始进行有效的稀疏训练,同时优化压缩效率。第一阶段使用PQ索引评估了SNN中现有稀疏子网络的可压缩性,这促进了基于数据压缩见解的突触连接的重新线的自适应确定。在第二阶段,这种重新布线的比率严格告知动态突触连接过程,包括修剪和再生。这种方法显着改善了对深SNN中稀疏结构训练的探索,从压缩效率的角度来动态地调整稀疏性。我们的实验表明,这种稀疏的训练方法不仅与当前的深SNNS模型的性能保持一致,而且还显着提高了压缩稀疏SNN的效率。至关重要的是,它保留了使用稀疏模型启动培训的优势,并为将AI授予神经形态硬件的边缘提供了有前途的解决方案。