基于人工神经网络 (ANN) 的大型语言模型 (LLM) 表现出色,但在计算效率和生物可解释性方面面临挑战。我们提出了 BrainGPT,这是一种基于测试时间训练 (TTT) 框架并受到脉冲神经网络 (SNN) 和神经生物学原理启发的新型 LLM 架构。我们的方法采用双模型结构,模拟人脑中观察到的分层语言处理,并利用具有自适应阈值的专门积分和激发神经元模型。通过多阶段训练策略,包括量化感知预训练、ANN 到 SNN 的转换和受生物启发的无监督学习,我们实现了从 ANN 到 SNN 的数学证明的无损转换,保留了 100% 的原始 ANN 模型的性能。此外,受生物启发的无监督学习优化了维持 100% ANN 性能所需的最大时间步骤。与原始 TTT 模型相比,BrainGPT 的能源效率提高了 33.4%,训练收敛速度提高了 66.7%。这项工作推动了节能且可生物解释的大型语言模型的开发,这些模型的性能可与最先进的基于 ANN 的模型相媲美,同时显著改进了 TTT 框架。
卷积神经网络(CNN)被广泛用于解决各种问题,例如图像分类。由于其计算和数据密集型性质,CNN加速器已被开发为ASIC或FPGA。应用程序的复杂性增加导致这些加速器的资源成本和能源需求增长。尖峰神经网络(SNN)是CNN实施的新兴替代品,有望提高资源和能源效率。本文解决的主要研究问题是,与CNN等效物相比,SNN加速器是否真正满足了能源需求减少的期望。为此,我们分析了多个SNN硬件加速器的FPGA,以涉及性能和能源效率。我们提出了一种新颖的尖峰事件队列编码方案和一种新型的记忆组织技术,以进一步提高SNN能源效率。这两种技术都已经融入了最先进的SNN体系结构,并对MNIST,SVHN和CIFAR-10数据集进行了评估,以及两个不同尺寸的现代FPGA平台上的相应网络体系结构。对于小型基准(例如MNEST),SNN设计与相应的CNN实施相比,没有相当或很少的延迟和能源效率优势。对于更复杂的基准测试,例如SVHN和CIFAR-10,趋势逆转。
摘要 - Audio DeNoisisiques是增强音频质量的重要工具。尖峰神经网络(SNN)为音频转化提供了有希望的机会,因为它们利用了脑启发的体系结构和计算原理来有效地处理并分析音频信号,从而通过提高的准确性和降低了计算机上的高空空间,从而实现了实时Denoo。本文介绍了Spiking-Fullsubnet,这是一种基于SNN的实时音频DeNoising模型。我们提出的模型不适合一种新型的封闭式尖峰神经元模型(GSN),以有效捕获多尺度的时间信息,这对于实现高赋予音频降解至关重要。此外,我们建议将GSN集成在优化的全snet神经架构中,从而实现了全频段和子带频率的有效处理,同时显着降低了计算的额外处理。与体系结构的进步一起,我们结合了一个基于度量歧视的损失函数,该功能有选择地增强所需的性能指标而不会损害他人。经验评估表明,尖峰全鞋的表现出色,将其排名为英特尔神经形态深噪声抑制挑战的轨道1(算法)的赢家。索引术语 - 语言denoising,尖峰神经网络,neu-Romorphic Computing,Audio Signal Processing
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
自从 20 世纪中叶麦卡洛克-皮茨神经元 1 和感知器 2 模型诞生以来,人工智能 (AI) 或人工神经网络 (ANN) 在很大程度上仍然是一个计算机科学术语。由于计算能力不足,本世纪后期的进展受到阻碍。1980-2000 年期间的集成电路制造无法在单个处理器和内存芯片上高密度集成晶体管。因此,在深度神经网络 (DNN) 或深度卷积神经网络 (DCNN) 3 上运行模拟并存储指数级累积的数据在时间和能源成本方面是不切实际的,尽管当时 ANN 模型已经相对完善 4-10 。随着芯片密度的提升以及对摩尔定律的追求带来的图形处理单元 (GPU) 等多核处理器的出现,再加上更高效的 ANN 算法 3,11,12,计算能力瓶颈在本世纪初得到成功解决。2012 年,具有十亿个连接的 DNN 被证明能够识别猫和人体等高度概念化的物体 13。同年,DNN 被证明在图像分类准确率方面与人类不相上下(基于 MNIST 数据库),甚至在交通标志识别方面也超越了人类 14。脉冲神经网络 (SNN) 由 Maass 于 1995 年提出 15,16,它采用脉冲
摘要 - 在性能和能量限制下的腿部机器人运动的在线学习仍然是一个挑战。的方法,例如随机梯度,深度增强学习(RL),已经针对双子,四倍和六脚架进行了探索。这些技术在计算密集程度上,因此很难在边缘计算平台上实施。这些方法在能源消耗和吞吐量方面也是不足的,因为它们依赖复杂的传感器和数据预处理。另一方面,神经形态范围(例如尖峰神经网络(SNN))在边缘智能上的低功率计算中变得越来越有利。snn表现出具有突触的仿生峰值时间依赖性可塑性(STDP)的强化学习机制的能力。但是,尚未探索训练腿部机器人以中央模式发生器(CPG)在SNN框架中生成的同步步态模式行走。这种方法可以将SNN的效率与基于CPG的系统的同步运动相结合 - 提供了移动机器人技术中端到端学习的突破性绩效。在本文中,我们提出了一种基于增强的随机学习技术,用于培训刺激CPG的六型固醇机器人,该机器人学会了在没有先验知识的情况下使用生物风格的三脚架步态行走。整个系统是在具有集成传感器的轻质Raspberry Pi平台上实现的。我们的方法在有限的边缘计算资源中为在线学习打开了新的机会。
摘要 - 大语言模型(LLMS)中的前进已导致其广泛采用和在各个领域的大规模部署。但是,由于其大量的能耗和碳足迹,它们的环境影响,尤其是在推断期间,已经成为人们越来越关注的问题。现有研究仅着眼于推理计算,忽视了网络辅助LLM服务系统中碳足迹的分析和优化。为了解决这一差距,我们提出了AOLO,这是一个用于低碳导向的无线LLM服务的分析和优化框架。AOLO引入了全面的碳足迹模型,该模型量化了整个LLM服务链中的温室气体排放,包括计算推理和无线通信。此外,我们制定了一个优化问题,旨在最大程度地减少整体碳足迹,该碳足迹是通过在体验质量和系统性能限制下的关节优化推理输出和传递功率来解决的。为了实现这种联合优化,我们通过采用SNN作为参与者网络来利用尖峰神经网络(SNN)的能源效率,并提出了一种低碳导向的优化算法,即基于SNN的基于SNN的深度加固学习(SDRL)。全面的模拟表明,与基准软批评者相比,SDRL算法显着降低了整体碳足迹,降低了18.77%,突出了其实现更可持续的LLM推理服务的潜力。
摘要 - 在啮齿动物的导航研究中,在海马次区域CA1和下毛(Sub)中都鉴定出空间反应,但这两个大脑区域似乎对空间特征进行了不同的编码。位于子位置细胞的位置比CA1更大且特异性较少。此外,子神经元显示出针对行进标题和轴的更强定向调制。基于记录在“ Triple-T”迷宫上执行导航任务的神经和行为数据,我们提出了一个尖峰的神经网络建模框架,以复制在CA1和SUB中观察到的响应属性。将峰值定时依赖性可塑性和同源缩放(STDP-H)的参数进化,以使两种不同的SNN类似于CA1的录音的响应,当大鼠穿越Triple-t Maze时。我们的结果表明,位置输入在形成CA1位置细胞中可能更具影响力,而Sub似乎同时集成了同类中心位置信息和自我运动提示,以编码“位置类别”。此外,我们的结果预测,这些区域中不同的空间响应可能部分归因于不同的stdp-H学习参数。此处介绍的框架可以用作自动参数调整系统,用于复制其他大脑区域的响应。
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
提取和分析详细的视觉信息。传统的人工神经网络(ANN)在这一领域取得了长足的进步,但是尖峰神经网络(SNN)的能源效率和以生物为基础的基于时间的处理而引起了人们的关注。然而,由于限制,诸如量化误差和次优膜电位分布之类的局限性,现有的基于SNN的语义分割方法面临着高精度的挑战。这项研究介绍了一种基于尖峰 - 深板的新型尖峰方法,并结合了正则膜电位损失(RMP-loss)来应对这些挑战。建立在DeepLabv3体系结构的基础上,提出的模型通过优化SNN中的膜电位分布来利用RMP-loss来提高分割精度。通过优化膜电位的存储,其中仅在最后一个时间步骤存储值,该模型可显着减少内存使用和处理时间。这种增强不仅提高了计算效率,而且还提高了语义分割的准确性,从而可以对网络行为进行更准确的时间分析。提出的模型还显示出更好的稳健性,以防止噪声,在不同级别的高斯噪声下保持其精度,这在实际情况下很常见。所提出的方法在标准数据集上展示了竞争性能,展示了其用于节能图像处理应用的潜力