1引言自动驾驶通过消除人为错误[1]来减少道路死亡[1],通过改善交通流量[60]并为数百万受残疾人影响的人提供流动性来改变社会的潜力[1]。虽然自动驾驶汽车的部署有限(AVS)是无限的[14],但仍存在挑战,例如在较差的天气条件和建筑区域中运营[22]。为了应对这些挑战,为提高机器学习的准确性(ML)模型而采取了重大努力[16,52,61,76,88]。但是,更准确的模型通常更加算法[73,90]。因为AV必须以比人类的反应时间快(例如390毫秒至1。2 s [45,87]),在车辆上部署模型需要仔细的运行时和准确性之间的权衡导航,以确保AVS提供高质量的决策和快速响应时间[34,79]。进一步满足严格的绩效要求的挑战,由于体力,热量和稳定性限制以及由于经济现实而导致的车载计算AV可以访问今天受到限制(第3节);综上所述,结果是在最新的(SOTA)AV硬件上可用的量命令较少,可用于云,该硬件可以实时运行哪些模型。访问更好的计算将为更快地运行更高精度的更大型号提供机会,直接转化为提高安全性。我们建议转向云,该云提供对SOTA硬件的按需访问,因此提供了机会
摘要。最近使用的深神经网络(DNN)是通过计算单元(例如CPU和GPU)物理部署的。这样的设计可能会导致重大的计算负担,显着的延迟和密集的功耗,这是物联网(IoT),边缘计算和无人机的使用等应用的关键限制。光学计算单元(例如,超材料)的最新进展揭示了无势能和光速神经网络。但是,超材料神经网络(MNN)的数字设计从根本上受到其物理局限性的限制,例如精确,噪声和制造过程中的带宽。此外,未通过标准的3×3卷积内核完全探索MNN的独特优势(例如,光速计算)。在本文中,我们提出了一种新型的大核超材料神经网络(LMNN),该神经网络(LMNN)最大程度地利用了最先进的ART(SOTA)MNN的数字能力(SOTA)MNN,并通过模型重新参数和网络压缩,同时也考虑了光学限制。新的数字学习方案可以在建模元元素的物理限制时最大化MNN的学习能力。使用拟议的LMNN,可以将卷积前端的计算成本用于制造的光学硬件。两个公开可用数据集的实验结果表明,优化的混合设计提高了分类准确性,同时降低了计算潜伏期。提出的LMNN的发展是朝着无能和光速AI的最终目标迈出的有前途的一步。
表2:10级原始音频语音命令分类的最新结果。tenn 16和Tenn 128的精度百分比表示它们在SOTA结果附近达到,但具有一定数的计算和参数数量。数字16和128表示在TENN中执行的亚采样量,进一步减少了参数和计算的数量。wavegan指示与针对原始语音设计的基线CNN(与Wavegan模型的歧视者)相比。是一种通用体系结构,不是针对原始语音设计的特定设计。
最新的自然语言基础模型和计算机视觉基础模型的激增促进了各个领域的创新。受到这一进展的启发,我们探讨了基础模型在智能农业中预测的时间序列的潜力,这是一个经常受到有限数据可用性困扰的领域。具体来说,这项工作提出了一种新的TimeGPT应用,TimeGPT是一种最先进的时间序列基础模型,以预测土壤水潜力(𝜓土壤),这是通常用于灌溉建议的现场水状态的关键指标。传统上,此任务依赖于各种输入变量。我们探索了TimeGPT预测土壤的能力:(𝑖)零拍设置,(𝑖𝑖)仅依靠历史性𝜓土壤测量值的微调设置,以及(𝑖𝑖𝑖)微调的设置,我们还为模型添加了外源变量。我们将TimeGPT的性能与已建立的SOTA基线模型进行了比较,以预测土壤。我们的结果表明,TimeGPT仅使用历史𝜓土壤数据实现竞争性预测准确性,从而强调了其在农业应用中的显着潜力。这项研究通过实现传统上依赖广泛的数据收集和领域实验的预测任务,为农业可持续发展的基础时间序列模型铺平了道路。
摘要 - 鸟眼视图中的3D对象检测(BEV)空间最近已成为自主驾驶领域的一种普遍方法。与透视图方法相比,尽管准确性和速度估计的改善有所提高,但现实世界自动驾驶汽车中基于BEV的技术的部署仍然具有挑战性。这主要是由于它们依赖基于视觉转化器(VIT)的架构,该体系结构引入了相对于输入分辨率的二次复杂性。为了解决这个问题,我们提出了一个有效的基于BEV的3D检测框架,称为Bevenet,该框架利用了仅卷积的架构建筑设计来规避VIT模型的局限性,同时保持基于BEV的方法的有效性。我们的例子表明,在Nuscenes挑战中,Bevenet比现代的最新方法(SOTA)快速(SOTA)方法,达到0.456的平均平均精度(MAP)为0.456,NUSCENES检测分数(NDS)的平均精度(MAP)为0.555在Nuscenes验证验证数据上,均为0.555,并使用persenter firames perference Speets perspersy Specters perspersy perspersy perspersy prement perspersy prement per per per 47。据我们所知,这项研究是第一个实现基于BEV的方法的重大效率提高的研究,强调了它们对现实世界自动驾驶应用程序的可行性的增强。
现代大型语言模型(LLM)开发人员通常会设置安全一致性,以防止LLM产生不受欢迎或有害内容。这个对齐过程涉及使用人体标记的数据集对模型进行微调,其中包括拒绝回答不道德或有害问题的样本。但是,最近的研究发现,LLM的安全对准可以通过越狱提示绕开。这些提示旨在创建特定的对话方案,并有一个有害的问题。用这样的提示查询LLM可能会误导该模型来回答有害问题。大多数现有的越狱攻击要求模型内部或大量的人类干预才能产生越狱的提示。更先进的技术利用遗传学方法来实现自动化和黑框。然而,遗传方法的随机性和随机性质在很大程度上限制了最先进的(SOTA)越狱攻击的有效性和效率。在本文中,我们提出了RL-Jack,这是一种新颖的Blackbox越狱攻击,该攻击由深度增强学习(DRL)提供支持。我们将越狱提示的产生作为搜索问题,并设计了一种新颖的RL方法来解决它。我们的方法包括一系列定制设计,以在越狱背景下提高RL代理的学习效率。值得注意的是,我们设计了一个llm辅助的动作空间,该空间可以在约束整体搜索空间的同时进行di-verse动作变化。一旦受过培训,我们的经纪人就可以自动针对不同的LLM产生多样化的越狱提示。此外,我们提出了一种新颖的奖励功能,为代理商获得成功越狱的卑鄙的奖励。通过严格的分析,我们发现RL作为确定性搜索策略,比随机搜索方法(例如遗传算法)更有效,并且具有较小的随机性。通过广泛的评估,我们证明了RL-Jack总体上比对六个SOTA LLM的现有越狱攻击更有效,包括大型开源模型(例如Llama2-70B)和商业模型(GPT-3.5)。我们还显示了RL-Jack对三种SOTA防御的弹性及其在不同模型中的可转移性,包括非常大的Llama2-70B。我们通过详细的消融研究进一步证明了RL-Jack的RL代理的必要性以及我们的行动和奖励设计的有效性。最后,我们验证了RL杰克对关键超参数的变化的不敏感性。
与基于卷积神经网络(CNN)相比,我们研究了基于变压器的行人检测模型较低性能的原因。CNN模型会产生密集的行人建议,单独完善每个建议,然后对其进行非最大抑制(NMS)的跟进,以产生稀疏的预测。在争论中,变压器模型每个地面真相(GT)行人盒选择一个建议,然后从中选择了正面的正态。所有其他建议,其中许多与选定的建议高度相似,都通过了负梯度。尽管这导致了稀疏的预测,从而消除了NM的需求,但在许多类似的建议中,任意选择,有效的训练和较低的行人检测准确性。为了减轻问题,我们建议基于Min-Cost-Flow的配方,而不是常用的Kuhn-Munkres匹配算法,并纳入了诸如每个地面真相盒的约束,并且与一个建议的提案相匹配,并且许多同样好的建议可以与单个地面真相盒相匹配。我们提出了基于匹配算法的第一个基于变压器的行人检测模型。广泛的实验表明,我们的方法达到了3个失误率(较低)3。7 /17。4 /21。8/8。3/2。0在Eurocity / tju-traffic / tju-校园 /城市专家 /加州理工学院数据集中,而4个。7/18。7/24。8/8。5/3。 1通过当前的sota。 代码可从https://ajayshastry08.github.io/flow_ matcher 获得。5/3。1通过当前的sota。代码可从https://ajayshastry08.github.io/flow_ matcher
现代 SMT 求解器(例如 Z3)提供用户可控制的策略,使求解器用户能够根据其独特的实例集定制求解策略,从而显著提高求解器针对其特定用例的性能。然而,这种策略定制方法提出了一个重大挑战:为 SMT 实例类手工制定优化策略对于求解器开发人员和用户来说仍然是一项复杂且艰巨的任务。在本文中,我们通过一种基于蒙特卡洛树搜索 (MCTS) 的新型方法解决了自动 SMT 策略合成问题。我们的方法将策略合成视为一个顺序决策过程,其搜索树对应于策略空间,并使用 MCTS 来导航这个巨大的搜索空间。使我们的方法能够识别有效策略同时保持低成本的关键创新是分层和分阶段 MCTS 搜索的思想。这些新颖的启发式方法允许更深入、更有效地探索策略空间,使我们能够合成比最先进 (SOTA) SMT 求解器中的默认策略更有效的策略。我们将我们的方法(称为 Z3alpha)作为 Z3 SMT 求解器的一部分来实现。通过对六种重要的 SMT 逻辑进行广泛的评估,Z3alpha 在大多数基准测试中表现出比 SOTA 综合工具 FastSMT、默认 Z3 求解器和 CVC5 求解器更优异的性能。值得注意的是,在具有挑战性的 QF BV 基准测试集上,Z3alpha 比 Z3 中的默认策略多解决 42.7% 的实例。
*对AI技术和应用进行研究,包括但不限于计算机视觉,自然语言处理,强化学习和机器学习。*实现并评估SOTA AI模型和算法,以解决复杂的问题并提高AI应用的效率和准确性,特别是在工业制造和组装领域。*与跨职能团队或外部合作伙伴合作,将AI解决方案开发和集成到现有系统和工作流程中。*将技术和技术顾问转移到产品团队 *与AI和机器学习的最新研究和行业趋势保持最新状态。*发表原始研究,并在公共事件或会议上出现。
实验基准是近年来人工智能 (AI) 惊人进步的核心。在机器学习等领域,科学贡献的相关性通常与流行数据集或竞赛所取得的性能水平相关。与此相关,人工智能的技术贡献不仅限于同行评议期刊或会议上的单篇科学论文,而是一个更复杂的团队和社区项目生态系统,这些团队和社区项目开发架构或系统,并不断更新报告(通常在 arXiv.org 和其他开放存储库上)、源代码、预训练模型和结果(通常在 github.com 上)。这项活动通常由基准驱动。传统的科学计量研究很少捕捉到基准对影响人工智能研究的重要性,因为它们主要关注已发表的论文及其之间的引用。在本文中,我们分析了基准如何影响人工智能的研究动态以及从学术界到科技巨头等不同参与者的行为方式。我们对 25 个流行的 AI 基准进行了分析,总共有 1,943 个结果条目。我们从书目存储库中提取了合著者社区,并绘制了它们随时间变化的性能结果。对于每个基准,“成功”与它们对 SOTA 前沿的贡献有关,SOTA 前沿是一条由二维图上的性能跳跃定义的最先进曲线,以时间和性能为维度。我们探索了一系列假设,这些假设涉及在基准上进行重复尝试的社区与进行更多孤立尝试的社区的行为、成功社区的组成(单一机构与多个机构)、它们的多样性(行业、学术界或混合)以及每个社区活跃成员数量的时间动态。最近的研究 1、2 表明“小团队会破坏,而大团队会发展”,但这一发现在