建议客户寻求专家建议,以确保他们按照相关法律法规使用 Symantec 服务。根据司法管辖区的不同,这可能包括(但不限于)数据保护法、隐私法、电信法规和就业法。在许多司法管辖区,要求服务用户被告知或同意监控或拦截他们的电子邮件,以便接收 Symantec 提供的安全服务。由于当地立法,本文档中描述的某些功能在某些国家/地区不可用。
摘要:SMS垃圾邮件已成为移动用户的重大关注点,导致挫败感和不便。机器学习已被证明是过滤垃圾邮件消息的有效解决方案。但是,在实时场景中实施这些方法带来了独特的挑战。最近的一项研究旨在通过开发利用机器学习的实时SMS垃圾邮件过滤系统来解决这些挑战。这项研究的主要重点是通过专注于数据准备,功能工程,算法选择和模型部署来优化系统在实时分类中的性能。通过根据实时分类的要求来量身定制这些方面,系统可以有效地打击SMS垃圾邮件,同时保持高度的准确性和低潜伏期。另一个有希望的调查领域是自然语言处理(NLP)技术的整合,以更全面地分析SMS消息的内容。通过识别微妙的垃圾邮件特征,例如欺骗性语言或操纵策略,该系统可以提高其在过滤垃圾邮件消息中的总体准确性。将系统的适用性扩展到其他消息平台和语言也可以扩大其在各种通信渠道上打击垃圾邮件中的影响。这不仅将使移动用户受益,而且还会有助于更安全,更安全的数字环境。关键字:SMS垃圾邮件过滤,实时分类,机器学习
概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 本指南涵盖的内容. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 轻松管理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 12 层病毒和垃圾邮件防护 . . . . . . . . . . . . . . . . . . . . . 11 入站邮件过滤 . . . . . . . . . . . . . . . . . . . . . 11 出站邮件过滤和加密 . . . . . . . . . . . . . . . . . . 11 内部病毒扫描 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 15
概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 本指南涵盖的内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 轻松管理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IPv6 网络支持 . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................................................................................................................................................15
我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
摘要。垃圾邮件仍然是一个持久的问题,不仅消耗了时间和带宽,而且构成了重大的网络安全威胁。结果,有效的垃圾邮件过滤已成为必不可少的。重点是天真的贝叶斯(NB),决策树(DT)和支持向量机(SVM),本研究对当代垃圾邮件过滤中使用的主要机器学习技术进行了详尽的分析。本文研究了这些方法的基本原理,通过在Kaggle数据集上进行的广泛实验进行比较它们的性能,并讨论了垃圾邮件过滤技术的当前挑战和未来方向。研究表明,SVM对于处理高维数据特别有效,DT提供了卓越的解释性,而NB简化了概率分类。实验结果表明,尽管每种方法都具有其优势和劣势,但将SVM与NB结合起来显着提高了分类精度。尽管有这些进展,但由于不断发展的垃圾邮件策略,垃圾邮件过滤器仍然面临挑战。为了解决这些持续的问题,结论部分突出了需要更可靠,灵活的垃圾邮件过滤技术,并为将来的研究方向提出建议。
最近的研究表明,SMS垃圾邮件中有一个显着的激增,是旨在欺骗个人泄露私人帐户或身份细节的实体,通常称为“网络钓鱼”或“电子邮件垃圾邮件”。常规垃圾邮件过滤器难以充分地确定这些恶意电子邮件,从而面对从事在线交易的消费者和企业面临挑战。解决此问题提出了重大的学习挑战。最初以直接的文本分类问题出现,但分类过程因垃圾邮件和合法电子邮件之间的惊人相似性而变得复杂。在这项研究中,我们引入了一种名为“滤波器”的新方法,专为检测欺骗性SMS垃圾邮件而设计。通过合并量身定制的功能,以揭示对DUPE用户使用的欺骗性技术,我们的SMS垃圾邮件电子邮件的准确分类率超过99.01%,同时保持较低的假阳性率。使用包括746个垃圾邮件实例和4822个合法电子邮件实例的数据集获得了这些结果。在具有两个属性和5568实例的数据集上评估过滤器的精度,特别是超过现有方法。我们提出的模型是一种混合NB-ANN模型,达到99.01%的最高精度,表现优于幼稚的贝叶斯(98.57%)和人工神经网络(98.12%)。这突出了混合方法在增强电子邮件垃圾邮件检测和恶意软件过滤的精度方面的功效,从而确保跨培训和测试数据集的全面覆盖范围,以改善反馈循环。
本研究通过开发一种混合垃圾邮件过滤模型,填补了理论和应用方面的空白。该模型将随机森林分类器的稳健性与神经网络的复杂模式识别能力以及朴素贝叶斯的概率推理相结合,以增强数据安全和网络分析能力。我们重申垃圾邮件过滤在应对网络安全挑战中的重要性,并强调现有技术的优势和局限性;并论证了强大的垃圾邮件过滤系统在应对日益演变的垃圾邮件威胁方面的重要性。在初步评估的六种预测方法中,随机森林 (RF) 分类器被评为最有效的模型,其最高准确率达到 95.87%,最低误分类错误率仅为 4.13%,并且在识别真阳性和真阴性方面表现均衡。随机森林、神经网络和朴素贝叶斯算法的混合使用进一步将准确率提升至 97.22%。关键词:随机森林分类器、垃圾邮件过滤、支持向量机、决策树、朴素贝叶斯、神经网络、网络分析