右侧图片显示的是经过分子复合物处理的细胞样本,该分子复合物可以与荧光银纳米簇形成接吻 DNA 结构,而左侧的细胞样本未经处理。所有细胞还经过脂质体处理,这种物质有助于将分子带入细胞,从而吸引特定的微小 RNA(微小 RNA-21)到达接吻 DNA 结构。使用不同的显微镜技术对细胞样本进行拍照,突出细胞(灰色图像)和荧光银纳米簇,它们被波长为 594 nm 的光激发,随后发出波长为 650 nm 的红光。可以看出,经过处理的细胞发出红光,表明microRNA-21已经与接吻DNA结构的尾部结合。
摘要:超顺磁性氧化铁纳米粒子(SPION)是一种独特的纳米材料,具有卓越的磁性和生物相容性,因此最近引起了研究人员的关注。SPION 在诊断、药物输送、生物传感和生物成像等领域有广泛的应用。通过施加外部磁场来控制这些纳米粒子的能力使它们成为如此广泛应用的完美纳米材料。此外,SPION 具有独特的表面化学性质,允许用不同的有机或无机材料进行表面功能化/涂层,从而使其适用于不同的方面。本综述总结了最近提出的用于合成适用于不同应用的 SPION 的方法。此外,本文还讨论了 SPION 的惊人特性。最后,概述了 SPION 的一些最新应用。关键词:SPION;药物输送;磁性纳米粒子;顺磁性材料;表面功能化;功能材料。
超顺磁性氧化铁纳米粒子 (SPION) 是纳米医学领域一项有希望的进展,在诊断和治疗应用中都表现出巨大的潜力。它们可以在磁场中磁化,并且不会显示永久磁化,从而可以在体内精确定位。在交变磁场下,SPION 会产生热量,可用于抗癌磁热疗或触发药物释放。在诊断方面,它们被广泛用作磁共振成像 (MRI) 的造影剂,而磁粒子成像 (MPI) 是一种使用 SPION 作为示踪剂的新兴临床前诊断技术。尽管有这些有希望的应用,但 SPION 的临床实用性受到与可扩展和可重复制造相关的挑战的阻碍。还需要集中精力提高 MPI 分辨率。此外,磁热疗在治疗炎症和感染性疾病中的应用仍然相对未被充分探索。因此,本论文的主要目标是通过可扩展的制造技术开发专门用于炎症和感染性疾病成像和治疗的 SPION。研究的第一部分涉及系统回顾,以检查有关使用 SPION 诊断和治疗慢性炎症疾病的最相关研究。MRI 被确定为 SPION 的主要应用。然而,对 MPI 和磁热疗分别用于成像和治疗炎症疾病的探索有限。在第二个项目中,使用基于风险的药品质量设计方法来优化用于磁热疗的 SPION。在第三个项目中,系统地研究了纳米粒子特性对 MPI 性能的影响。此外,这些项目建立了火焰喷雾热解作为一种可扩展和可重复的技术,用于合成具有复杂化学计量的纳米粒子用于磁热疗和 MPI。在研究的最后部分,通过可扩展技术将 SPION 整合到复合材料中,以改善炎症和传染病的治疗。SPION 与抗炎药塞来昔布一起被整合到片剂中。通过磁热诱导原位非晶化,药物溶解度显著提高。SPION 也被整合到微纤维中,磁性微纤维的散热作用与强力霉素一起用于对抗耐甲氧西林金黄色葡萄球菌。与单独使用药物相比,这显著减少了细菌生长。本论文介绍了 SPION 特性及其功能性能的系统探索,建立了一种可扩展的合成技术,并开发了新系统,使 SPION 更广泛地适应生物医学应用。
摘要。胶质母细胞瘤 (GB) 是一种高度侵袭性和浸润性的脑肿瘤,尽管进行了最大限度的安全切除、化疗和放疗,但其预后不良且复发率高。超顺磁性氧化铁纳米粒子 (SPION) 是一种新型工具,可用于许多应用,包括磁靶向、药物输送、基因输送、高温治疗、细胞追踪或多种同时功能。SPION 通过靶向肿瘤细胞蛋白或肿瘤血管,被研究作为磁共振成像肿瘤造影剂。在小鼠模型中,SPION 已将药物输送到 GB 肿瘤。除了靶向肿瘤细胞进行成像或药物输送外,SPION 还被证明可有效靶向高温。除了动物模型外,还对多种不同的 SPION 使用模式进行了人体试验,为进一步的临床前和临床试验提供了重要的发现和经验教训。SPION 为监测和治疗 GB 肿瘤开辟了几种新途径;在这里,我们回顾了当前的研究和各种可能的临床应用。
超顺磁性铁氧化铁纳米颗粒(SPION)是纳米医学中有希望的进步,在诊断和治疗应用中都表现出巨大的潜力。它们可以在磁场中磁化,并且不会显示永久性磁化,从而可以在体内精确定位。在交替的磁场下,SPION会产生热量,可用于针对癌症的磁性高温治疗或触发药物释放。诊断,它们被广泛用作磁共振成像(MRI)的对比剂,而磁性粒子成像(MPI)是一种使用SPIONS作为示踪剂的新兴临床前诊断技术。尽管有这些有希望的应用,但SPION的临床实用性受到与可扩展和可再现制造有关的挑战的阻碍。还需要集中精力来改善MPI解决方案。此外,磁性高温用于治疗炎症和感染性疾病的应用仍然相对不受影响。因此,本论文的主要目的是开发针对通过可扩展的制造技术进行成像和治疗炎症和感染性疾病的SPION。研究的第一部分涉及系统综述,以检查有关使用SPION用于诊断和治疗慢性炎症性疾病的最相关研究。MRI被确定为SPION的主要应用。然而,分别对MPI和磁性高温进行成像和治疗炎症性疾病的探索有限。spions与抗炎药Celecoxib一起掺入片剂中。在第二个项目中,使用设计方法基于风险的药物质量来优化磁性高温的SPION。在第三个项目中系统地研究了纳米颗粒性质对MPI性能的影响。此外,这些项目还将火焰喷射热解作为一种可扩展且可重复的技术,用于将纳米颗粒合成具有复杂化学计量的纳米颗粒,用于磁性高温和MPI。在研究的最后一部分中,通过可扩展技术将SPION纳入复合材料,以改善炎症和传染病的治疗。药物溶解度通过磁性高温诱导的原位非晶化显着提高。也将SPION纳入超细纤维中,并将磁性超纤维的热量耗散与强力霉素对抗耐甲氧西林的金黄色葡萄球菌。与单独使用该药物相比,这导致细菌生长大幅降低。本论文引入了对SPION特性及其功能性能的系统探索,为其生产建立了可扩展的合成技术,并开发了新型系统,以更广泛地适应生物医学应用中的SPION。
纳米粒子的声学特性(例如,运动超声成像 [4])或机械特性(剪切波弹性成像 [5])。SPION 携带的药物进入目标区域对恶性组织的影响较大,这是因为目标区域中的粒子空间密度高且停留时间长。在主动药物释放方面,非磁性聚合物基纳米粒子与 SPION [6] 不同,前者在聚焦超声 (FUS) 波场中会导致惯性空化,这与它们所谓的“声敏感性”有关。在这里,用超声检测空化的方法(“被动”或“主动”)允许监测,局部药物释放由空化触发 [7]。对于 SPION,在监测和局部药物释放的背景下,对超声诱导空化的潜在声敏感性尚未得到测试。因此,对 SPION 声敏感性的研究是本研究的主题。研究的本文中使用的 SPION 由德国埃尔兰根大学实验肿瘤学和纳米医学科 [2] 合成、表征、测试和生产,并在表 2 中进一步描述。单个氧化铁核的直径约为 10-15 纳米,但粒子往往会聚集成簇,直径约为 100 纳米。药物靶向应用中使用的粒子直径应小于 200 纳米,因为尺寸越小,穿透组织的能力越强,血液中的胶体稳定性越高。
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。
引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
立方体的合成无功能立方体(Cub unfun ;由 GMO、尼罗河红和 F127 组成的空立方体)和空白立方体(Cub blank ;未经功能化的 PEG 化阳离子立方体,由 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红和 F127 组成)的制备采用之前发表的方法并进行了一些修改 [1]。将 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红、helenalin、SPION 溶解在乙醇中并充分涡旋混合(表 S1)。在 70 °C 的真空条件下在加热块中蒸发有机溶剂,然后在 N 2 气流下进一步干燥。将脂质混合物冷冻干燥过夜。然后将 2 微克/毫升 Pluronic F127(溶于 PBS)加入干脂质中,然后以 20 kHz 的频率进行超声处理,开启 5 秒,关闭 5 秒,持续 5 分钟。为了将未封装的化合物(如 helenalin 和 Nile Red)从立方相分散体中分离出来,使用 10 kDa MWCO Slide-A-Lyzer MINI 透析装置(Fisher Scientific Ltd,拉夫堡,英国)对溶液进行透析 2 小时。对于抗体结合,将 5 µg 抗 CD221 抗体与 50 ng Traut 试剂(Sigma Aldrich,吉林汉姆,英国)在磷酸盐缓冲液(0.1 M,2 mM EDTA,pH 8.0)中在室温(RT)下反应 1 小时进行硫醇化,导致 -SH 基团附着到完整的抗体上 [2]。或者,抗 CD221 抗体通过与 10 mM DTT 在室温下反应 2 小时在铰链区处被切割。反应结束后,通过 10 kDa MWCO 透析 2 小时从硫醇化抗体或半抗体中去除残留化学物质 [3]。纯化的硫醇化抗体或半抗体通过抗体的-SH 基团和立方体上的马来酰亚胺基团之间的硫醇-马来酰亚胺迈克尔反应过夜结合到 Cub 空白中,形成 Cub wh-Ab 或 Cub ha-Ab 。对于透明质酸 (HA) 结合,将不同体积的 1 mg/mL 透明质酸与 Cub 空白在室温下孵育 4 小时,产生 Cub 1-5%HA 。我们在溶剂蒸发之前将不同量的 SPION 掺入脂质混合物中,并通过超声处理生成 Cub 1-5%ION。通过将半抗体与 Cub 1%ION 结合,再与 HA 连接,合成三功能立方体 (Cub fun)。立方体中海伦那林的包封率 (EE) 是通过将载有海伦那林的立方体经 10 kDa MWCO 透析后用乙醇溶解,并通过液相色谱 (LC) 定量 NPs 中包封的海伦那林,然后将包封的海伦那林的量除以海伦那林的总量并乘以 100 来计算的。海伦那林的释放率是通过从 100 中减去 EE 来评估的。