Splice 求解采用非线性桩基础建模的线性弹性上部结构的桩结构界面点位移。“Splice”包括 Gensod、Pilgen 和 Splice 程序。Splice 这个名称用于单独的程序 Splice 以及桩程序套件 Gensod、Pilgen 和 Splice。Gensod 生成土壤曲线。Pilgen 创建桩数据;几何形状、横截面数据、重量、桩头载荷等。Gensod 和 Pilgen 都生成数据文件,然后由 Splice 读取。Splice 求解由土壤、桩和(如果需要)Sestra 生成的上部结构连接刚度组成的非线性方程组。图 1.2 显示了 Sesam 系统中 Splice 的概览。Sestra 将分析线性护套并生成减小的刚度矩阵和施加在耦合节点处的载荷矢量,即所谓的减小步骤。通过此输入,Splice 将解决非线性桩-土-上部结构系统并计算桩中的位移和力。这将输入到 Sestra,Sestra 将通过重追踪过程找到套管中的力和位移。该过程如图 1.1 所示。
功能和好处•用标准解决方案更换手动剪接•符合ESA/ESCC规格•易于使用•可移动的D*MA CRIMP类型触点标准•紧凑型格式•紧凑型格式,旨在接受最流行的电缆测量表•无污染•低残留型•低残留磁性•高辐射和温度材料(Peek材料)(偷窥)
调节反义寡核苷酸(ASOS)为罕见的神经系统疾病提供治疗选择,包括患者特异性,个性化的ASOS,其中包括非常罕见的突变。受到米拉森(Milasen)的发展,1突变1药物(1m1m)和荷兰RNA治疗中心(DCRT)的启发,旨在发展特异性患者ASO,并分别治疗欧洲和荷兰的合格患者。将在指定的患者环境下提供治疗。我们的举措受益于欧洲药品局(EMA)在临床前校对研究,安全研究,复合和衡量治疗患者的福利和安全性方面的监管建议。我们在这里概述了这些相互作用中最重要的考虑因素,以及我们如何在欧洲境内制定和治疗合格患者的计划中实施此建议。
1.简介 飞机是一种通过从空中获得推力而飞行的飞行器。它通过机翼的静态升力或动态升力,或者有时是飞机发动机的向下推力来抵消重力。围绕飞机的人体运动称为飞行。民用飞机由飞行员驾驶,但无人驾驶飞机可以由计算机间接控制或自主控制。飞机可以根据升力类型、飞机推力、用途等不同标准进行分类。较重的飞机(例如飞机)必须设法处理向下推的空气或气体,以便发生反应(根据牛顿运动定律)将飞机向上推。这种在空中的动态运动是“气动”一词的来源。有两种方法可以控制产生的快速上升力,即流线型升力和发动机推力。飞机的设计考虑了许多因素,例如客户和制造商的要求、安全协议、物理和财务要求。对于某些飞机型号,设计过程由国家适航机构控制。飞机的主要部件通常分为三类: 1.结构包括主要承重部件和耦合设备。2.动力系统包括动力源和相关设备。3.飞行包括控制、导航和通信系统,通常是电气性质的。1.1 飞机结构 飞机由五个主要辅助部分组成,即:1.机身:机身是机身的基本结构,其他所有部分都连接在其上。机身包括驾驶舱或飞行甲板、旅客舱和货舱。2.机翼:机翼是飞机最基本的升力输送部件。机翼的布置根据飞机类型及其刺激而变化。大多数飞机的设计使得机翼的外端比机翼与机身连接的地方高。3.尾翼(尾部结构):尾翼或尾部提供飞机的安全性和控制力。4.动力装置(推进系统):飞机动力装置分为五种类型。5.纵梁与壳体或肋骨可靠地关联。涡轮螺旋桨发动机用于较低速度,冲压喷气发动机用于高速飞机,涡扇发动机用于0.3马赫至2马赫,涡轮喷气发动机用于高速飞机,以及基本低速飞机的发动机。起落架:飞机的起落架将飞机支撑在地面上,平稳飞行,保持飞行和着陆的平稳。 1.2 纵梁和接头 在飞机机身中,纵梁连接到成型器(也称为机匣)并沿着飞机的纵向方向运行。它们主要负责将蒙皮上的流线型重量传递到边框和成型器中。在机翼或稳定器中,纵梁横向运行并连接在肋骨之间。这里的主要功能还包括将机翼上的扭转力转移到肋骨上并进行战斗。有时会使用“纵梁”和“纵梁”这两个词。纵梁通常比纵梁承受更大的重量,并且将蒙皮重量转移到内部结构上。纵梁通常是
摘要 ◥ 纤维连接蛋白的额外结构域 B 剪接变体 (EDB + FN) 是一种由肿瘤相关纤维母细胞沉积的细胞外基质蛋白 (ECM),与肿瘤生长、血管生成和侵袭有关。我们假设 EDB + FN 是使用抗体-药物偶联物 (ADC) 进行治疗干预的安全且丰富的靶点。我们描述了针对 EDB + FN (EDB-ADC) 的 ADC 的产生、药理学、作用机制和安全性概况。EDB + FN 广泛表达于胰腺癌、非小细胞肺癌 (NSCLC)、乳腺癌、卵巢癌、头颈癌的基质中,而在正常组织中则受到限制。在患者来源的异种移植 (PDX)、细胞系异种移植 (CLX) 和小鼠同源肿瘤模型中,EDB-ADC 通过位点特异性技术与 auristatin Aur0101 结合,表现出强效的抗肿瘤生长抑制作用。在
摘要 DNA 拓扑异构酶 II α (170 kDa, TOP2 α /170) 诱导增殖细胞中瞬时 DNA 双链断裂,以解决染色体凝聚、复制和分离过程中的 DNA 拓扑纠缠。因此,TOP2 α /170 是抗癌药物的主要靶点,其临床疗效常常因化学耐药性而受到影响。尽管已经确定了许多耐药机制,但人类癌细胞系对 TOP2 α 界面抑制剂/毒药的获得性耐药通常与 Top2 α /170 表达水平的降低有关。我们实验室最近的研究,结合其他研究人员的早期发现,支持以下假设:对 TOP2 α 靶向药物的获得性耐药的主要机制是由于替代的 RNA 加工/剪接。具体而言,已报道了几种 TOP2 α mRNA 剪接变体,它们保留了内含子,并被翻译成缺乏核定位序列的截短 TOP2 α 异构体,随后导致核质分布失调。此外,内含子保留可能导致截短异构体缺乏核定位序列和活性位点酪氨酸 (Tyr805),而活性位点酪氨酸是形成酶-DNA 共价复合物所必需的,并且在存在 TOP2 α 靶向药物的情况下诱导 DNA 损伤。最终,这些截短的 TOP2 α 异构体导致药物对细胞核中的 TOP2 α 的活性降低并表现出耐药性。因此,对调节 TOP2 α 前 mRNA 的替代 RNA 加工的机制的完整表征可能会产生新的策略来规避获得性耐药性。此外,新型 TOP2 α 剪接变体和截短的 TOP2 α 同工型可用作药物耐药性、预后和/或直接未来 TOP2 α 靶向治疗的生物标志物。
Splice Therapeutics 博士或硕士级分子生物学家 Splice Therapeutics 正在创建 RNA 编辑分子,这些分子可侵入剪接以治疗遗传和获得性遗传疾病。我们创新方法创建的专有分子可通过任何临床相关载体传递,并避免与其他基因编辑技术相关的许多困难。我们寻求一位受过分子生物学培训且至少有 2-3 年执行实验室级生物技术程序经验的博士或硕士级科学家。候选人将准备 DNA 和 RNA 文库,进行高通量筛选,并使用 PCR、克隆和人类细胞和细菌转染对选定的候选物进行功能测试。具有 FACS、荧光显微镜和使用 ASO、siRNA 或其他 RNA 调节剂进行基因编辑的实验室技能是一项加分项。成功的候选人将对加入一个激励性的实验室环境并为我们治疗遗传疾病的目标做出贡献有着浓厚的兴趣。Splice Therapeutics 位于马里兰州蒙哥马利学院校园内的 Germantown 创新中心。请将求职信和个人简历副本发送至 C. Anthony Altar 博士 (tony@splicetherapeutics.com)。C. Anthony Altar,博士,总裁兼首席运营官