摘要。在结直肠癌诊断中,常规结肠镜检查技术面临着临界局限性,包括有限的视野和缺乏深度信息,这可能会阻碍检测预癌病变。当前的方法很难为结肠表面提供全面和策划的3D重建,这可以帮助最大程度地减少缺失的区域并重新进行癌前息肉。解决这个问题,我们介绍了“高斯煎饼”,这种方法利用了3D高斯分裂(3D GS)与经常基于神经网络的同时定位和映射(RNNSLAM)系统相结合。通过将几何和深度正则化引入3D GS框架 - 我们的方法可确保高斯与结肠表面更准确地对齐,从而使3D重建更加顺畅,并对详细的纹理和结构进行了新颖的观看。在三个Di-verse数据集中进行的评估表明,高斯煎饼增强了新型视图的合成质量,超过了当前的领先方法,PSNR增长了18%,SSIM提高了16%。它还提供了超过100×的更快渲染和超过10倍的培训时间,使其成为实时应用程序的实践工具。因此,这有望实现临床翻译,以更好地检测和诊断结直肠癌。代码:https://github.com/smbonilla/gaussianpancakes。
不可察觉的对抗性攻击旨在通过添加与输入数据的不可察觉的概念来欺骗DNN。以前的方法通常通过将共同的攻击范式与专门设计的基于感知的损失或生成模型的功能相结合,从而提高了攻击的易用性。在本文中,我们提出了扩散(Advad)中的对抗攻击,这是一种与现有攻击范式不同的新型建模框架。通过理论上探索基本的建模方法,而不是使用需要神经网络的reg-ular扩散模型的转化或发电能力,从而将攻击作为非参数扩散过程概念化。在每个步骤中,仅使用攻击模型而没有任何其他网络来制定许多微妙而有效的对抗指导,从而逐渐将扩散过程的结束从原始图像终结到了所需的不可感知的对抗性示例。以拟议的非参数扩散过程的扎实理论基础为基础,达到了高攻击功效,并且在本质上降低了整体扰动强度,并实现了高发作的效果。此外,还提出了增强版本的Advad-X,以评估我们在理想情况下的新型框架的极端。广泛的实验证明了拟议的Advad和Advad-X的有效性。与最新的不可察觉的攻击相比,Advad平均达到99.9%(+17.3%)的ASR,为1.34(-0.97)L 2距离,49.74(+4.76)PSNR和0.9971(+4.76)和0.9971(+0.0043)(+0.0043)ssim,抗四个DIFERTIBER架构的DNN均具有三个流行的DNN。代码可在https://github.com/xianguikang/advad上找到。
环境参数(例如空气温度)是人类生活质量和能源效率管理的关键终端。城市地区人口稠密,并且通过城市形态和景观空间模式与其中一些自然现象高度相关。因此,预测城市计划对环境参数的影响对于适当的决定和计划以增强城市的生活条件至关重要。先前的研究强调了乌拉巴形态与空气温度之间的密切相关性,强调了在这些分析中采用三维数据的重要性。在这项研究中,我们首先引入了一种将CityGML数据转换为VoxEls的方法,该方法在大规模数据集(例如城市)的高分辨率上可以有效,快速地工作,但通过牺牲了一些建筑细节,从而限制了先前的Voxelization方法的局限性,这些方法限制了对大型量表的较高量表的较高范围,以较高的量化和无效的范围,以使其对Voxel的高度分配为高分。来自多个城市的那些体素化的3D城市数据和相应的空气温度数据用于开发机器学习模型。在模型训练之前,在输入数据上实施了高斯模糊以考虑空间关系,因此,在高斯模糊之后,空气温度和体积建筑物形态之间的相关率也会增加。这个受过训练的模型能够通过使用相应像素的构建体积信息作为输入来预测空气温度的空间分布。在模型训练之后,预测结果不仅是用均方根误差(MSE)评估的,而且一些图像相似性指标,例如结构相似性指数量度(SSIM)和学习的知觉图像贴片相似性(LPIPS)能够在评估过程中检测和考虑空间关系。这样做,该研究旨在帮助城市规划人员将环境参数纳入其计划策略,从而促进更可持续和居民的城市环境。
多级阈值处理是计算机视觉中的一个重要操作,计算机视觉是人工智能 (AI) 的一个子领域,用于理解和解释现实世界中的数据。现有的基于图像直方图的多级阈值熵方法主要处理除碎片边界之外的熵信息的最大化,这降低了准确性。这些问题导致阈值精度差且速度慢。为了解决这个问题,我们提出了一种基于相互依赖性的新技术,该技术使用碎片边界,这是一个最小化问题。研究了一个第一手目标函数,它处理碎片边界。传统的多级阈值技术由于穷举搜索过程而计算成本高昂,另一种方法是使用基于自然启发算法的进化计算。本文还提出了一种用于多级阈值的新优化器,称为自适应平衡优化器 (AEO),它是对基本平衡优化器 (EO) 的改进,通过为表现不佳的搜索代理实施自适应分散决策。使用标准基准函数将 AEO 性能与最先进的算法——平衡优化器 (EO)、灰狼优化器 (GWO)、鲸鱼优化算法 (WOA)、松鼠搜索算法 (SSA) 和风驱动优化 (WDO) 算法进行了比较。基于定性和定量分析,AEO 的表现优于 EO、GWO、WOA、SSA 和 WDO。通过使用 AEO 最小化目标函数来获得最佳阈值。对于实验,考虑了 BSDS 500 数据集的 500 张图像。考虑了峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和特征相似性指数 (FSIM) 等流行指标进行定量分析。在计算复杂度降低的同时,阈值精度存在显著差异。强调了本文的优点,以确保其未来在使用软计算(AI 的一个子领域)的工程应用领域中的应用。
来自多个中心的大脑磁共振成像(MRI)数据通常在成像条件下表现出差异,例如所使用的核磁共振仪器的类型和随机噪声的存在。此外,MRI切片之间差距的差异进一步使数据的可用性复杂化了高级人工智能(AI)分析。基于深度学习的方法已成为解决挑战的实用解决方案。然而,现有的研究在很大程度上忽略了大脑MRI数据的增强,尤其是在面对明显的切片间隙时,例如在我们的临床大脑MRI切片中观察到的大约6 mM。响应这一研究差距,我们旨在开发新的方法来增强大脑MRI数据,重点关注更大的切片差距。为了实现这一目标,我们提出了SOFNET,它利用了基于光流和编码器 - 二次骨架的sofnet。我们模型的主要目标是插值MRI切片,同时保持特征一致性。利用光流法,与其他超分辨率算法相比,该方法表现出了出色的性能,我们提出的方法已在三个不同的大脑MRI数据集上进行了评估,并明确解决了4.2 mm和6.0 mm之间的差距。实验结果强调了SOFNET在生成适应的脑MRI数据方面获得的超分辨率质量的显着增强,超过了其他单位超级分辨率(SISR)方法。为了确保插值脑MRI切片的可信度,我们基于诸如峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标(例如峰值信噪比(PSNR))对三个MRI进行了实验。这些实验证明了我们方法在将低分辨率MRI数据转换为清晰可靠的大脑MRIS中的有效性,从而可以使用AI技术进行了改进的分析。