稳态视觉诱发电位 (SSVEP) 是一种广泛使用的脑机接口 (BCI) 范式,因其多目标能力和有限的脑电图电极要求而受到重视。传统的 SSVEP 方法经常因闪烁的光刺激而导致视觉疲劳和识别准确率下降。为了解决这些问题,我们开发了一种创新的稳态运动视觉诱发电位 (SSMVEP) 范式,该范式融合了运动和颜色刺激,专为增强现实 (AR) 眼镜设计。我们的研究旨在增强 SSMVEP 反应强度并减轻视觉疲劳。实验在受控的实验室条件下进行。使用 EEGNet 的深度学习算法和快速傅里叶变换 (FFT) 分析脑电数据,以计算分类准确率并评估反应强度。实验结果表明,双模态运动-颜色融合范式显著优于单模态SSMVEP范式和单色SSVEP范式,在中等亮度(M)和C=0.6的面积比下,准确率最高可达83.81%±6.52%。客观测量和主观报告均证实了双模态运动-颜色融合范式的信噪比(SNR)有所提高,视觉疲劳有所减轻。研究结果验证了双模态运动-颜色融合范式在基于SSVEP的脑机接口(BCI)中的应用前景,能够同时提升脑部反应强度和用户舒适度。
摘要:脑电图 (EEG) 传感器技术和信号处理算法的最新进展为脑机接口 (BCI) 在从康复系统到智能消费技术等多种实际应用中的进一步发展铺平了道路。当谈到 BCI 的信号处理 (SP) 时,人们对稳态运动视觉诱发电位 (SSmVEP) 的兴趣激增,其中运动刺激用于解决与传统光闪烁/闪烁相关的关键问题。然而,这些好处是以准确性较低和信息传输速率 (ITR) 较低的代价为代价的。在这方面,本文重点介绍一种新型 SSmVEP 范式的设计,而不使用试验时间、阶段和/或目标数量等资源来增强 ITR。所提出的设计基于直观的想法,即同时在单个 SSmVEP 目标刺激中集成多个运动。为了引出 SSmVEP,我们设计了一种新颖的双频聚合调制范式,称为双频聚合稳态运动视觉诱发电位 (DF-SSmVEP),通过在单个目标中同时整合“径向缩放”和“旋转”运动而不增加试验长度。与传统的 SSmVEP 相比,所提出的 DF-SSmVEP 框架由两种运动模式组成,这两种运动模式同时集成并显示,每种模式都由特定的目标频率调制。本文还开发了一种特定的无监督分类模型,称为双折典型相关分析 (BCCA),该模型基于每个目标的两个运动频率。相应的协方差系数被用作额外特征来提高分类准确性。基于真实 EEG 数据集对所提出的 DF-SSmVEP 进行了评估,结果证实了其优越性。所提出的 DF-SSmVEP 表现优于其他同类方法,平均 ITR 为 30.7 ± 1.97,平均准确度为 92.5 ± 2.04,而径向缩放和旋转的平均 ITR 分别为 18.35 ± 1 和 20.52 ± 2.5,平均准确度分别为 68.12 ± 3.5 和 77.5 ± 3.5。