m erkel细胞癌是一种罕见的,高度侵略性的皮肤癌。进行多模态治疗,包括化学疗法和免疫疗法,总体存活率为14%至62%,具体取决于诊断时疾病阶段(1)。因此,迫切需要新的治疗选择。鉴于生长抑素受体(SSTR)由于其神经内分泌特征的过表达,SSTR指导的治疗可能是转移性默克尔细胞癌的一个有希望的靶标(2-4)。为了进一步研究这一潜力,已经进行了2项临床试验,其中正在进行与SSTR激动剂一起研究的肽受体放射性核素疗法与免疫疗法联合研究(Gotham试验,NCT04261855; IPRRT试验,NCT055583708)。尽管已在转移性默克尔细胞癌和其他神经内分泌肿瘤实体中建立了多年的各种激动靶向示踪剂,但是具有拮抗受体相互作用的示踪剂被认为是一种新的,有前途的疗法选择,因为它们可以与高肿瘤和亲蛋白的高肿瘤和促进症状相比(5)相比(5)。我们报告了一个77岁的男人,具有复发性转移性默克尔细胞癌,与68个标记的SSTR拮抗剂SSO120进行PET/CT(国际非主体名称:Satoreotide trizoxetan:satoreotide trizoxetan;也称为Nodaga-jr11,Ops202,Ops202,ops202,和ipn010101010101070;
1。新加坡新加坡国立大学Yong Loo Lin医学院诊断放射学系。 2。 Theranostics卓越中心,Yong Loo -Lin医学院,新加坡国立大学,新加坡Helios,Helios 11 Biopolis Way,新加坡138667,新加坡。 3。 新加坡新加坡国立大学的Yong lin医学学院转化医学中心,新加坡,临床成像研究中心。 4。 纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。 5。 Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。 6。 精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。 7。 美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。新加坡新加坡国立大学Yong Loo Lin医学院诊断放射学系。2。Theranostics卓越中心,Yong Loo -Lin医学院,新加坡国立大学,新加坡Helios,Helios 11 Biopolis Way,新加坡138667,新加坡。 3。 新加坡新加坡国立大学的Yong lin医学学院转化医学中心,新加坡,临床成像研究中心。 4。 纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。 5。 Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。 6。 精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。 7。 美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。Theranostics卓越中心,Yong Loo -Lin医学院,新加坡国立大学,新加坡Helios,Helios 11 Biopolis Way,新加坡138667,新加坡。3。新加坡新加坡国立大学的Yong lin医学学院转化医学中心,新加坡,临床成像研究中心。4。纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。 5。 Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。 6。 精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。 7。 美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。5。Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。6。精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。7。美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。8。德国美因茨的约翰内斯·古腾堡大学Triga化学系。
摘要 背景 神经内分泌肿瘤 (NET) 过度表达生长抑素受体 (SSTR)。方法 我们开发了一种第二代基于配体的抗 SSTR 嵌合抗原受体 (CAR),其细胞外部分掺入了生长抑素类似物奥曲肽。结果 抗 SSTR CAR T 细胞在体外对 SSTR+NET 细胞系表现出抗肿瘤活性。杀伤活性具有高度特异性,这通过 CAR T 细胞对通过 CRISPR/Cas9 工程改造以表达 SSTR2/5 突变变体的 NET 细胞缺乏反应性来证明。当在 NSG 小鼠中过继转移时,抗 SSTR CAR T 细胞诱导了对人 NET 异种移植瘤的显著抗肿瘤活性。尽管抗 SSTR CAR T 细胞可以识别小鼠 SSTR,这通过它们对小鼠 NET 细胞的杀伤能力可以看出,但在小鼠中未观察到对表达 SSTR 的器官(例如大脑或胰腺)的明显有害影响。结论总而言之,我们的研究结果确立了抗 SSTR CAR T 细胞是 NET 患者早期临床研究的潜在候选者。更广泛地说,已知肽药物可以指导 CAR T 细胞靶向的证明可能会简化多种肽基序的潜在效用,并为多种癌症的治疗应用提供蓝图。
尽管在首线化疗中加入了免疫检查点阻断,小细胞肺癌 (SCLC) 患者的预后仍然很糟糕。对于生长抑素受体 (SSTR) 过表达的 SCLC 亚组,放射性药物治疗 (RPT) 可能是未来有效的治疗选择。方法:在这里,我们介绍了一个接受过大量治疗的 IV 期 SCLC 患者的病例,该患者对 SSTR 导向的 RPT 显示出异常反应。进行了一项全面的转化检查,包括在治疗期间的不同时间点以及特别是对示踪剂摄取不一致的病变进行组织病理学、免疫组织化学和分子病理学分析。结果:除了对 RPT 有良好的反应外,还可以识别出治疗期间克隆动力学的有趣迹象,最重要的是,某些病变的 SSTR 下调是逃避 SSTR 导向的 RPT 的潜在机制。结论:这项独特的研究从临床-分子角度理解了小细胞肺癌的新治疗模式,可能为未来的治疗设计提供基础。
越来越多的文献报道了肽受体放射性核素治疗 (PRRT) 与其他抗肿瘤治疗的联合使用,以期产生协同效应,但可能增加安全性问题。增强 PRRT 结果的联合治疗基于改善肿瘤灌注、上调生长抑素受体 (SSTR)、使用 DNA 损伤剂进行放射增敏或靶向治疗。目前有几项 1 期或 2 期试验正在招募联合治疗方案的患者。PRRT 与细胞毒性化疗、卡培他滨和替莫唑胺 (CAPTEM) 的联合使用似乎具有临床应用价值,尤其是在胰腺神经内分泌肿瘤 (pNET) 中,且安全性可接受。目前正在进行的临床试验正在测试术前新辅助 PRRT、静脉和动脉内应用途径的 PRRT 组合、PRRT 与不同放射性标记(α、β、Auger)SSTR 靶向激动剂和拮抗剂的组合、免疫检查点抑制剂 (ICI)、聚(ADP-核糖)聚合酶-1 (PARP1i)、酪氨酸激酶 (TKI)、DNA 依赖性蛋白激酶、核苷酸还原酶或 DNA 甲基转移酶 (DMNT)。在罕见的 NET(如副神经节瘤、嗜铬细胞瘤)中与 [ 131 I]I-MIBG 的组合以及新的非 SSTR 靶向放射性配体用于个性化治疗过程。本综述将概述正在进行的 PRRT 联合治疗的现状。
Rad51/RecA 重组酶家族在典型的双链断裂 (DSB) 修复中发挥着关键作用:切除的 DSB 末端进入同源双链 DNA (dsDNA) 模板序列以启动修复。然而,使用单链 DNA (ssDNA) 作为模板修复 DSB(CRISPR/Cas9 介导的基因编辑的常用方法)不依赖于 Rad51。我们通过使用位点特异性 HO 内切酶创建 DSB 并使用 80 nt 单链寡核苷酸 (ssODN) 修复 DSB,分析了酿酒酵母中这些不依赖于 Rad51 事件的遗传要求,并通过 Cas9 介导的 DSB 与在体内产生 ssDNA 模板的细菌逆转录子系统相结合证实了这些结果。我们表明,单链模板修复 (SSTR) 依赖于 Rad52、Rad59、Srs2 和 Mre11-Rad50-Xrs2 (MRX) 复合物,但与其他 Rad51 独立的重组事件不同,它不依赖于 Rdh54。我们表明,Rad59 可减轻 Rad51 对 Rad52 链退火活性的抑制,无论是在 SSTR 中还是在单链退火 (SSA) 中。当引入大小和序列相同的双链寡核苷酸作为模板时,基因编辑依赖于 Rad51。基因编辑过程中错配的吸收取决于 Msh2 的活性,它对 ssODN 3' 侧的作用与 5' 端非常不同,ssODN 可以直接退火到切除的 DSB 端。此外,DNA 聚合酶 Pol δ 的 3' 到 5' 校对活性经常切除非常靠近模板 3' 端的错配。我们进一步报告称,SSTR 会导致直接修复序列附近区域的突变增加多达 600 倍。这些 DNA 聚合酶 ζ 依赖性突变可能会损害基因编辑的准确性。
使用 JMP® Clinical Version 8.0,学生 t 检验用于比较平均值并得出 p 值。(SAS Institute Inc.,北卡罗来纳州卡里),结果
语境性是量子力学 (QM) 的一个重要的非经典属性,自 20 世纪 60 年代以来就一直在研究 [1, 2],而该领域的最新进展与量子信息处理有关。研究这一问题的一个工具是稳定器形式主义 [3],特别是稳定器状态表表示 (SSTR) [4],它捕捉了量子理论中稳定器子理论的语境行为。它被广泛用于量子误差校正,也是研究量子优势特性的起点。一个典型的问题是,需要在稳定器量子理论中添加什么才能实现量子优势。然而,SSTR 不是本体论模型,而是稳定器子理论中量子态的表示,在内存和计算复杂度上是二次的。一个有趣的问题是,是否可以找到一个计算效率高的本体论模型,更具体地说是一个结果确定性模型。然后可将其用于研究量子优势与本体模型相比而非与稳定器 QM 相比的属性。目前已知的结果确定性模型要么是非语境化的,要么是指数级复杂度。也许最著名的是 2007 年 Spekkens 的玩具理论 (STT) [5],该理论将量子位建模为存在于四种离散本体状态之一中,同时将 Y 的预测测量结果与 X 和 Z 的测量结果联系起来。尽管 STT 是非语境化的,但它仍然可以重现许多量子现象。这成为 8 状态(立方体)模型 [6, 7] 的垫脚石,其中为每个量子位引入了一个额外的自由度,“将 Y 与 X 和 Z 分离”。另一个扩展是量子模拟逻辑 (QSL) [8, 9],见下文。 2019 年,Lillystone 和 Emerson [10] 提出了稳定子理论的上下文 ψ 认知模型,该模型具有结果确定性,但记忆复杂度呈指数增长,这是因为为每个 Pauli 算子分配了一个明确的相位值。还提出了另一种模型,该模型在记忆中是二次的,但该模型不再具有结果确定性。在本文中,我们借鉴了这些先前的努力,以实现我们的目标:
靶向放射性核素治疗在神经内分泌肿瘤治疗中发挥着越来越重要的作用。目前可用的治疗方法包括 Lu-177 DOTATATE(获批用于治疗晚期胃肠胰神经内分泌肿瘤 (GEP-NET))和 I-131 间碘苄胍 (MIBG)(获批用于治疗晚期嗜铬细胞瘤/副神经节瘤 ( 1 , 2 ))。Lu-177 DOTATATE 是一种肽受体放射性核素治疗 (PRRT),其靶向大多数分化良好的 NET 过度表达的生长抑素受体 (SSTR) 亚型。I-131 MIBG 依赖于去甲肾上腺素转运蛋白机制,该机制吸收来自神经嵴的组织中的胺,例如肾上腺髓质和交感神经系统 ( 3 )。肽受体放射性核素治疗 (PRRT) 是一种靶向全身治疗,利用放射性标记肽将细胞毒性辐射水平直接传送至过度表达特定受体的肿瘤 ( 4 )。这种靶向放射性药物的全身给药可将治疗剂量的辐射传送至特定疾病部位,同时最大限度地减少辐射对健康组织的影响。
CRISPR/CAS技术的常见应用涉及工程基因敲击素,其中DNA序列被取代或插入特定的基因组基因座。In contrast with CRISPR-mediated indels, which result from the error-prone non-homologous end joining (NHEJ) pathway, gene knockins are often engineered via homology-directed repair (HDR), typically through the use of CRISPR reagents (Cas enzyme and guide RNA) in tandem with a DNA template that shares homology with the target site and encodes for the desired modification (Hsu et al., 2014;图1,下面)。用于HDR的模板可以是双链DNA(DSDNA,线性或质粒)或单链DNA(SSDNA),并且最近的发现表明,修复机制取决于使用的模板类型而变化。 dsDNA触发了一种反映减数分裂同源重组(HR)的RAD51依赖性机制,而HDR涉及ssDNA(称为单链模板修复或SSTR)是Rad51独立的,并且需要多个组件,并且需要多个组成部分的Fanconi Anemia Anemia(FA)维修路径(RICHARDARDSON ERATHEWAY(RICHARDARSEN)等。