癫痫发作预测是治疗耐药性癫痫最常用的辅助策略之一。由于个体间差异,传统方法通常从同一患者身上收集训练和测试样本。然而,不同受试者之间的领域转移这一棘手问题仍未解决,导致临床转化率低。在本文中,提出了一种基于领域自适应 (DA) 的模型来解决这个问题。利用短时傅里叶变换 (STFT) 从原始脑电图数据中提取时频特征,并开发自动编码器将这些特征映射到高维空间。通过最小化嵌入空间中的域间距离,该模型学习了域不变信息,从而通过分布对齐提高了泛化能力。此外,为了增加其应用的可行性,本文模拟了临床采样情况下的数据分布,并在此条件下测试了模型,这是首次采用该评估策略的研究。在颅内和头皮EEG数据库上的实验结果表明,与以前的方法相比,该方法可以有效地最小化域间隙。
脑电图 (EEG) 可以控制机器用于人类目的,尤其是对于进行康复锻炼或常规任务的残疾人。机械手的脑机接口 (BCI) 使用深度学习将 (EEG) 大脑活动转换为机械手的命令,使用户可以通过想象的运动向右或向左移动他们的手。它可以使瘫痪者执行基本的手部动作,并帮助康复机器人帮助中风患者恢复手部功能,通过提供基于机器学习对其动作和意图的解释的指导性练习。人工智能算法,特别是深度学习,将隐含的脑波模式和意图分类和识别为脑电图。然而,EEG 信号具有高度的非平稳性,使其分析具有挑战性。因此,选择合适的信号处理策略变得至关重要。本研究旨在建立一个混合模型来指导机械臂运动,该模型应用运动方向和左右分类。通过将预训练的卷积神经网络(CNN)-Inception V3模型与传统的机器学习算法(逻辑回归(LR))(被认为是一种广泛的分类方法)相结合,并确定合适的信号处理方法,短时傅里叶变换(STFT)和连续小波变换(CWT)以选择最准确的方法对所提模型进行分类。所提出的混合模型的训练结果表明,STFT 比 CWT(0.997)具有更高的平均准确率(0.998),使其对九个受试者的当前数据集进行更精确的分类并提高混合 CNN 模型训练的有效性。同样,在评估指标上,STFT 实现的平均准确率的评估结果高于 CWT(0.997 > 0.797)。这表明 STFT 是特征提取的更好选择,提高了带有逻辑回归的混合 CNN 模型的泛化和鲁棒性。
信号在自然界和(人造)技术中都至关重要,因为它们使通信成为可能 1、2(图 1)。从数学上讲,信号是一维(例如语音)或多维(例如二维 (2D) 图像)的函数,它携带有关物理系统 3 的属性(例如状态)的信息。源通过信道将信号传输到接收器,接收器再将信号传送到目的地。例如,大脑通过声带通过空气发送口头信息,听者的耳朵接收该信息,然后将其传送到听者的大脑。当相同的信息通过智能手机传输时,空气会通过技术链进行补充,而其余部分则保持不变。信号在社会中无处不在 3、4(图 1)。无论信号来自何处,都需要进行处理才能生成、转换、提取和解释其所携带的信息 3。一种广泛用于解释(即提取和分析)信号中重复模式的方法是傅里叶变换 (FT) 3、4。FT 将时间函数转换为频率的复值函数,表示频率的幅度。FT 假设信号是平稳的。换句话说,它是一个随机过程,其中边际和联合密度函数不依赖于时间原点的选择 2。然而,在现实世界的实践中,这一假设经常被违反。因此,FT 无法可靠地处理现实世界的非平稳信号 5。为了避免非平稳性问题,存在先进的算法,这些算法基于信号分解为在时间和频率上很好地局部化(或分箱)的基本信号来分析信号 4。这些算法包括短期傅里叶变换 (STFT),也称为 Gabor 变换,和小波变换 (WT) 6。 STFT 与 FT 非常相似,但它使用窗口函数和在时间和频率上都局部化的短小波(而不是纯波)来提取时间和频谱信息。STFT 的缺点是它使用固定宽度的窗口函数,因此频率分析仅限于波长接近窗口宽度 7 的频率。此外,将信号切成短的固定宽度窗口会扰乱信号的属性。因此,频率分析会受到影响 8 。
压力是指身体对任何环境变化做出的生理、情绪和心理反应,需要进行调整,对人类心理产生重大影响。视障人士 (VIP) 的压力尤其难以控制,因为他们在未知情况下很容易感到压力。脑电图 (EEG) 信号可用于检测压力,因为它基本上代表了人类大脑中持续的电信号变化。文献表明,压力检测技术大多基于时域或频域分析。然而,使用时域或频域分析可能不足以提供适当的压力检测结果。因此,本文提出了一种使用经验模态分解 (EMD) 和短期傅里叶变换 (STFT) 从 EEG 信号中提取考虑时空信息的特征的方法。在 EMD 中,信号首先被分解为表示有限数量信号同时保持时域的固有模态函数 (IMF),然后使用 STFT 将时域转换为时频域。采用支持向量机 (SVM) 对陌生室内环境中 VIP 的压力进行分类。将所提方法的性能与最先进的压力检测技术进行了比较。实验结果证明了所提技术优于现有技术
原始脑电图数据的分析仍然是一个复杂的问题。脑电图是多种信息的庞大而复杂的提供者,同时易受噪声和伪影的影响 [1]。因此,要理解从这种微妙的动态电活动舞蹈中可以推断出什么,需要现代分析技术。脑电图和其他电生理记录可能有助于阐明大脑中的复杂计算 [2]。傅里叶变换是脑电图分析的基础 [3]。用于分析任何波形的传统测量工具会根据其频率内容将其分解为几部分 [4]。这种分解使得与大脑状态相关的峰值频率成为可能。一些例子是与深度睡眠相关的慢波、与放松相关的阿尔法波和与集中注意力相关的贝塔波 [5]。通过了解脑电图频谱中激活了哪些频带,研究人员可以使用它们快速访问潜在的大脑活动。短时傅里叶变换 (STFT) 将分析提升到了一个新的水平 [6]。STFT 假设信号是动态的但不稳定的,因此在时频域中表示它们 [7]。此外,还有另一种技术,称为频谱图,它通过每个频率的强度来表示颜色强度,同时保持随时间的变化一致 [8]。当将其应用于脑电图时,这使我们能够看到部分
摘要 —EEG 信号是复杂的低频信号。因此,它们很容易受到外界因素的影响。EEG 伪影去除在神经科学中至关重要,因为伪影会对 EEG 分析结果产生重大影响。在这些伪影中,眼部伪影的去除最具挑战性。在本研究中,通过开发基于双向长短期记忆 (BiLSTM) 的深度学习 (DL) 模型,提出了一种新颖的眼部伪影去除方法。我们通过结合 EEGdenoiseNet 和 DEAP 数据集创建了一个基准数据集来训练和测试所提出的 DL 模型。我们还通过在不同 SNR 水平下用 EOG 污染地面真实干净的 EEG 信号来增强数据。然后使用通过小波同步压缩变换 (WSST) 获得的高度局部化时频 (TF) 系数将 BiLSTM 网络馈送到从增强信号中提取的特征。我们还将基于 WSST 的 DL 模型结果与传统 TF 分析 (TFA) 方法,即短时傅里叶变换 (STFT) 和连续小波变换 (CWT) 以及增强原始信号进行了比较。首次提出的基于 BiLSTM 的 WSST-Net 模型获得了 0.3066 的最佳平均 MSE 值。我们的结果表明,与传统 TF 和原始信号方法相比,WSST-Net 模型显著提高了伪影去除性能。此外,所提出的 EOG 去除方法表明,它优于文献中许多传统和基于 DL 的眼部伪影去除方法。索引词 —EEG、眼部伪影、深度学习、LSTM、BiLSTM、WSST、STFT、CWT。
最近,基于条件分数的扩散模型在监督语音增强领域引起了人们的关注,从而产生了最新的性能。但是,这些方法在普遍到看不见的条件时可能会面临挑战。为了解决这个问题,我们引入了一种以无监督方式运行的替代方法,利用了扩散模型的生成力量。具体来说,在训练阶段,使用基于得分的扩散模型在短期傅立叶变换(STFT)域中学习了清晰的语音,从而使其无条件地从高斯噪声中产生干净的语音。然后,我们通过与语音信号推理的噪声模型相结合,开发了一种后验采样方法来增强语音的增强。通过迭代期望最大化(EM)方法同时学习噪声参数以及干净的语音估计。据我们所知,这是探索基于扩散的生成模型的第一部作品,用于无监督语音增强,与最近的变异自动编码器(VAE)基于无监督的方法和一种最先进的基于扩散的基于扩散的超级访问方法相比,这表明了有希望的恢复。因此,它在无监督的语音增强中为未来的研究打开了一个新的方向。
基于脑电信号的脑机交互(BCI)可以帮助肢体运动障碍患者进行日常生活及康复训练,然而由于信噪比低、个体差异大,脑电特征提取与分类存在准确率和效率低下的问题。针对该问题,本文提出了一种基于深度卷积网络的运动想象脑电信号识别方法。该方法首先针对脑电信号特征数据质量不高的问题,利用短时傅里叶变换(STFT)和连续Morlet小波变换(CMWT)对采集的实验数据集进行基于时间序列特征的预处理,从而得到特征鲜明、具有时频特征的脑电信号。并基于改进的CNN网络模型对脑电信号进行高效识别,实现高质量的脑电特征提取与分类。进一步提高脑电信号特征采集的质量,保证脑电信号识别的较高准确率和精度。最后基于BCI竞赛数据集和实验室实测数据对所提方法进行验证,实验结果表明该方法对脑电信号识别的准确率为0.9324,精度为0.9653,AUC为0.9464,具有良好的实用性和适用性。
在临床诊断中高度要求从脑部计算机界面(BCI)系统进行语音图像脑电图(EEG)信号的准确和自动分类。设计自动分类系统的关键因素是从原始输入中提取基本特征;尽管许多方法在该领域取得了巨大的成功,但它们可能无法处理来自不同接收领域的多尺度表示形式,因此阻碍了该模型获得更高的性能。为了应对这一挑战,在本文中,我们提出了一个新型的动态多尺度网络,以实现EEG信号分类。整个分类网络基于Resnet,输入信号首先通过短时傅立叶变换(STFT)编码特征;然后,为了进一步提高多尺度的特征提取能力,我们结合了动态多尺度(DMS)层,该层使网络可以从更精细的水平上学习来自不同接收场的多尺度特征。为了验证我们设计的网络的有效性,我们在BCI竞争II的公共数据集III上进行了广泛的实验,实验结果表明,我们提出的动态多尺度网络可以在此任务中实现有希望的分类性能。
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。