• 我如何帮助学生为我们的参观做好准备?通过分享有关美联储的简短视频或鼓励他们使用我们的移动指南完成寻宝游戏,帮助学生熟悉美联储。 • 为什么你们的团体参观有人数限制?我们的参观体验旨在确保团体的所有成员都能充分参与。由于展览的某些部分规模较小,我们有意限制团体规模,以便所有成员都能与大使和彼此互动。 • 你们为小学和初中团体提供参观吗?《经济在行动》是为中学生到成人阅读水平的团体设计的。我们建议年龄较小的团体进行自助参观,或者使用美联储系统内针对特定年级的资源。 • 我们会看到现金操作或金库吗?我们的《经济在行动》展览包括现金操作的视频,但不包括观看窗口或金库参观。我们鼓励达拉斯联邦储备银行休斯顿分行的游客安排休斯顿游客中心的参观,其中包括现金操作观看窗口。
CD36 正在成为癌症治疗的一个新靶点。1,2 CD36 是细胞表面蛋白 B 类清道夫受体家族的成员,可促进游离脂肪酸的吸收以进行脂质代谢。3 CD36 通过促进癌症转移、支持耐药性和调节肿瘤免疫来促进肿瘤生长。1,4 最近的研究表明,CD36 在卵巢肿瘤中上调。5,6 与肿瘤微环境中的脂肪细胞相互作用导致 CD36 上调,从而增强卵巢肿瘤转移。2 基于 CD36 的疗法,包括单克隆抗体和多肽,已被证明可有效抑制癌症转移。1 然而,就卵巢癌的耐药性而言,CD36 的作用尚不清楚,也没有关于利用 CD36 进行穿梭疗法以靶向耐药卵巢癌细胞的报道。越来越多的证据表明,线粒体在卵巢癌细胞的耐药性中起着关键作用。7-9 最近的一项研究表明,耐药性卵巢癌细胞的线粒体氧化磷酸化增加。10 线粒体靶向药物,如盐霉素和氯硝柳胺,已显示出通过削弱氧化磷酸化来克服耐药性的活性。11-13 然而,系统性毒性限制了这些药物在
摘要:干旱、盐度和极端温度等非生物胁迫是全球农作物生产力的主要限制因素,预计气候变化将加剧这些因素。活性氧 (ROS) 的过量产生是许多非生物胁迫的常见后果。抗坏血酸,也称为维生素 C,是植物细胞中最丰富的水溶性抗氧化剂,可以直接作为 ROS 清除剂对抗氧化应激,或通过抗坏血酸-谷胱甘肽循环(植物细胞中的主要抗氧化系统)对抗氧化应激。因此,通过工程改造具有增强抗坏血酸浓度的作物有可能促进广泛的非生物胁迫耐受性。已经采用了三种不同的策略来增加植物中的抗坏血酸浓度:(i) 增加生物合成,(ii) 增强循环,或 (iii) 调节调节因子。在这里,我们回顾了植物中抗坏血酸生物合成、循环和调节的遗传途径,包括迄今为止用于增加模型和作物物种中抗坏血酸浓度的所有代谢工程策略的总结。然后,我们重点介绍利用基因组编辑工具来增加作物中抗坏血酸浓度的非转基因策略,例如编辑控制 GDP-L-半乳糖磷酸化酶基因翻译的高度保守的上游开放阅读框。
上下文:COVID-19,大流行对公共卫生产生了深远的影响,导致近100万人死亡。新兴证据表明,肠道菌群产生的某些代谢产物与感染严重程度的潜在改变之间存在关联。三甲胺N-氧化物(TMAO)是由饮食中胆碱和甜菜碱的肠道微生物产生的废物代谢产物。证据获取:几项研究表明血清TMAO浓度与炎症和血栓形成的发展之间存在关联。三甲胺n-氧化物由肠道微生物组在营养不良状态下产生,上调了各种分子机制,例如核因子Kappa(NF-KB)分子途径,并促进自ch.粒子表面上的清道夫受体(SR)的表达。高水平的TMAO已显示可诱导促炎性细胞因子(如肿瘤坏死因子-Alpha(TNF-α)和白介素1β(IL-1β),同时还原抗炎细胞因子(例如interleukin-100)(IL-10)。此外,肠道衍生的TMAO增强了血小板聚集和对胶原蛋白的粘附,从而增加了血栓形成的风险。结论:了解肠道微生物组组成(例如肠道TMAO)之间的关联及其对SARS-COV-19感染进展的影响有助于控制疾病的严重程度。在这篇综述中,我们提出了一个假设,即肠道TMAO有可能增加Covid-19疾病的严重程度。
镍铁氧体/(n,s)氧化石墨烯(NF/(n,s)GO)通过使用Ni 2+和Fe 3+混合物(n,s)GO养老金中的Ni 2+和Fe 3+混合物合成。该材料用作水生B(Rhb)降解作为水生环境中的染料模型的光催化剂。发现Nife 2 O 4纳米颗粒的粒径为11.5 nm,高度分散在(N,S)GO矩阵上,该矩阵是由石墨和硫库制备的。可见光诱导的RHB在NF/(N,S)GO上的光降解已被研究,其中Nf/(n,s)GO与镍铁氧体和(N,S)GO相比,NF/(N,S)对RHB具有高光降解活性。此外,在RHB光降解的三个周期之后,该催化剂没有显示出明显的活性损失(与新鲜催化剂相比,降解效率下降约为15%),证实了其稳定性。化学氧的需求(COD)测量表明,在光降低240分钟后,COD从初始时间的49.4 mg.l -1逐渐减少到4.8 mg.l -1,表明降解过程的矿化程度很高。此外,动力学和自由基的清道夫研究表明,超氧化离子(·O 2 - ),羟基离子(·OH)是主要的光氧化剂,其次是孔(H +)和电子(E-)。还解决了RHB对NF/(N,S)GO的降解机制。这项研究通过利用可见光来源为水溶液中的有机污染物提供了一种可能的治疗方法。
GER 2 I 自 1974 年成立以来一直为有天赋、有创造力和才华的学生提供服务,并自 1977 年以来举办夏季住宿充实计划。每年夏天,像您这样的学生都会来到普渡大学,体验旨在激发他们的想象力和拓展他们的能力的计划。我们还提供各种娱乐活动,让您有机会在普渡大学宿舍里体验大学生活。以下是您在 GER 2 I 夏令营中将体验到的内容:智力挑战 - GER 2 I 班级规模小、具有挑战性、节奏快且互动性强。有才华和关爱的员工 - 我们的教师热衷于与学生分享他们的知识和经验。一流的设施 - 普渡大学是一所世界一流的研究型大学,GER 2 I 学生可以使用最先进的实验室、计算设施和各种图书馆。友谊 - GER 2 I 吸引了来自世界各地的一群有天赋、有才华和有创造力的人!您将找到与您有共同兴趣和热爱学习的朋友。个人成长 - 在 GER 2 I 工作人员的监督、指导和支持下,您将适应并茁壮成长,您将住在宿舍,在大学教室和实验室学习,并像大学生一样利用普渡大学的文化和娱乐设施。乐趣 - GER 2 I 夏令营辅导员通过电影之夜、篮球、保龄球、寻宝游戏、游戏和锦标赛、琐事和实地考察等活动让课外时间变得令人兴奋。
这篇综合综述探讨了人类对疟疾的复杂免疫反应,疟疾是由疟原虫引起的一项重大的全球健康挑战。先天和适应性免疫系统在抵御疟疾方面发挥着关键作用,其机制涉及各种免疫细胞,如树突状细胞、自然杀伤细胞、嗜酸性粒细胞、嗜碱性粒细胞、T 细胞和 B 细胞。这些细胞以动态相互作用的方式运作,识别寄生虫并在其生命周期的不同阶段对其作出反应。我们的综述从方法论上分析了最近关于疟疾免疫反应的研究和文献,重点关注不同免疫细胞的作用以及细胞因子和抗体的产生。我们还探讨了疟疾的流行病学,特别关注印度尼西亚等地区,那里的气候、地理和社会经济因素影响传播动态。研究结果强调了先天免疫系统在早期病原体检测和反应中的关键作用,特别是通过 PAMP 被 PRR(如 TLR 和清道夫受体)识别。此外,还强调了适应性免疫反应的复杂性,包括抗子孢子抗体和 T 细胞免疫,特别是在识别寄生虫输出抗原和发展长期免疫的记忆反应方面。免疫反应的复杂性,加上由于寄生虫复杂的生命周期和不同的流行病学模式而导致的疫苗和疗法开发方面的挑战,强调了在疟疾免疫学和公共卫生战略方面继续研究和创新的必要性。本综述有助于更深入地了解抗疟疾的免疫机制以及控制和根除这种普遍疾病的持续努力。
背景:癌症是全球第二大死亡原因,每年每百万人中约有 3500 人死于癌症。因此,基于生物网络的多靶点药理学药物对于研究抗癌药物的分子机制和重新利用现有药物以减少不良反应至关重要。大红属植物是一种多样化的属,具有广泛的经济和药理学特性。对该属推定的抗癌特性的研究有限,基于生物网络的作用机制仍然未知。本研究旨在利用对接加权网络药理学方法构建大红属植物抗癌作用的可能化合物/靶点/途径生物网络,并研究其潜在的作用机制。方法:从公共数据库中检索出总共 194 种天然大红属化合物,并使用八种分子描述符进行筛选。从数据库中检索与癌症相关的基因靶点,并检查靶基因与相关途径的功能。使用 Cytoscape v3.7.2 构建了三大网络:化合物-靶标网络、靶标-靶标通路网络和化合物-靶标-通路网络。结果。我们的研究结果表明,大花属植物的抗癌活性涉及 6 种化合物、9 种靶标和 63 种信号通路,从而形成多化合物、多靶标和多通路网络。此外,还使用分子动力学 (MD) 模拟来估计最佳命中蛋白质-配体复合物的结合亲和力。结论。这项研究表明大花属植物具有潜在的抗癌活性,这可能有助于开发新的替代抗癌药物的清除剂新化合物。
正常的人类细胞可以合成胆固醇或从脂蛋白中取出以满足其代谢需求。在某些恶性细胞中,从头胆固醇的合成基因是转录静音或突变的,这意味着生存需要脂蛋白的细胞摄取。最近的数据表明,依赖于脂蛋白介导的胆固醇摄取的淋巴瘤细胞也会受到氧化和铁依赖性细胞死亡机制的影响,这是由细胞膜中氧化脂质积聚而触发的,除非脂质氢氧化酶4(glutathione periquidase 4(GPEXID)的氧化脂质酶4(GPSID)对氧化脂蛋白溶液酶4(GPXID酶4(GPXID)。研究将胆固醇摄取的机制与铁凋亡联系起来,并确定高密度脂蛋白(HDL)受体作为胆固醇消耗疗法的靶标的潜在作用,我们治疗了淋巴瘤细胞系已知对减少HDL型Nananoparke(Hdplike nanopark)(Hdplike nanapters)(Hdpp)(Hdplike nanopart)(Hdpp)(Hdplike)敏感。HDL NP是一种胆固醇贫乏的配体,与富含胆固醇的HDL,可寻求的B1型HDL结合(Scarb1)。我们的数据表明,HDL NP治疗激活了治疗细胞中的分解代谢反应,降低了从头胆固醇的合成,伴随着GPX4表达的几乎完全降低。结果,氧化的膜脂质积聚,通过与铁吞作用一致的机制导致细胞死亡。全身在小鼠淋巴瘤异种移植物和从淋巴瘤患者获得的主要样品中,全身给药后,我们在体内获得了相似的结果。总而言之,用胆固醇吸收中的HDL NP靶向SCARB1 - 上瘾的淋巴瘤细胞消除了GPX4,导致癌细胞死亡与与铁毒性相一致的机制。
摘要 全身化疗仍是晚期鼻咽癌 (NPC) 的主要治疗方法,但由于耐药性和全身毒性,过去十年中治疗效果有限。姜黄素 (Cur) 是一种有效的化疗替代品,因为它在 NPC 治疗中表现出了显著的治疗潜力。然而,缺乏组织特异性和在实体瘤中渗透性差是有效治疗的主要障碍。因此,在本研究中,构建了一种自组装的亚30纳米治疗性脂质纳米粒子,负载 Cur,命名为 Cur@α-NTP-LN,特异性靶向清道夫受体B类成员1 (SR-B1) 并增强其对体内 NPC 的治疗效果。我们的结果表明,Cur@α-NTP-LNs 在 NPC 细胞特异性靶向性、抑制细胞增殖和诱导细胞凋亡方面有效且优于游离 Cur。体内和体外光学成像显示,Cur@α-NTP-LNs具有较高的靶向性,可在鼻咽癌异种移植瘤中特异性地聚集并全身给药后将Cur递送至肿瘤中心。此外,Cur@α-NTP-LNs对鼻咽癌皮下肿瘤的生长表现出明显的抑制作用,与Cur和α-NTP-LNs治疗组相比,抑制率分别超过71%和47%。此外,在鼻咽癌肺转移模型中,Cur@α-NTP-LNs几乎阻断了鼻咽癌的转移,并显著提高了生存率。因此,亚30纳米Cur@α-NTP-LNs提高了Cur的溶解度,并表现出将Cur靶向递送到鼻咽癌实体肿瘤中心的能力,对鼻咽癌肿瘤的生长及其转移发挥高效的协同抑制作用。关键词:鼻咽癌 靶向治疗 姜黄素 肽 脂质纳米粒子