注意:近似MAT100故障表面是CAE模拟的特征。高级Seeger模型也使用测试数据来表征,该数据提供了更好的相关性。请参阅Mohammad Shojaee的演示文稿以获取更多详细信息
Bonita Saunders 2021 Etta Zuber Falconer 讲师 – 美国妇女数学协会和美国数学协会 J. Teufel、S. Kotler、E. Shojaee、A. Kwiatkowski、S. Geller、S. Glancy、M. Knill – 2021 年物理世界年度突破奖第一名
目前,自闭症谱系障碍的诊断主要依靠临床医生的症状和行为来判断。但这些方法要求医生具备很高的专业知识,且诊断结果容易受到医生的主观性影响。为了寻找更客观的生物标志物来识别自闭症谱系障碍,许多研究者致力于从遗传学、表观遗传学、身体代谢和神经影像学等角度寻找有效的生物标志物( Goldani et al., 2014 )。神经影像学被认为是一种很有前途的非侵入性技术,可以揭示人脑的潜在模式。利用结构磁共振成像(sMRI)、功能磁共振成像(fMRI)和正电子发射断层扫描(PET)等技术,可以将人脑建模为一个复杂的系统,各个区域执行不同的结构和功能。先前的神经影像学研究表明,在神经或精神疾病人群中,大脑的结构和功能连接都会发生交替( Mueller et al., 2013 )。在各类检查方法中,fMRI,尤其是记录血氧水平依赖性 (BOLD) 信号变化的静息状态 fMRI (rs- fMRI),已广泛用于研究阿尔茨海默病 (Qureshi et al., 2019b)、精神分裂症 (Yan et al., 2019) 和 ASD (Abraham et al., 2017) 等精神疾病。功能性磁共振成像数据以高维 (∼ 100 万) 的 4 维矩阵格式组织,包含空间和时间信息。这使得直接利用原始数据作为分类算法的输入成为一项艰巨的任务。为了解决数据的高维性,已经提出了许多降维技术 (Abdi and Williams, 2010; Suk et al., 2015; Soussia and Rekik, 2018)。一些人没有使用原始 fMRI 数据,而是提出了脑功能网络分析来描述感兴趣区域 (ROI) 之间的“关系”。基于脑血流会刷新脑各区域的神经活动这一事实,对功能连接 (FC) 进行建模有助于理解精神障碍的神经基础 (Lindquist, 2008)。最常用的 FC 模型是 Pearson 相关性,可以使用两个脑区之间的 BOLD 信号来计算。脑功能网络 (BFN) 是根据图谱预先定义的所有位置的 FC 强度构建的。BFN 构建方法明确将维数从 4 维降低为 1 维向量。许多机器学习 (ML) 方法已成功用于与 ASD 相关的改变的 BFN 的自动分类 (Uddin 等人,2013;Abraham 等人,2017)。一些方法采用稀疏方法,通过在损失函数中添加额外的稀疏正则化项(例如,Lasso(Tibshirani,1996)或Elastic Net(Zou and Hastie,2005))来实现隐式降维。然而,常用来描述 ROI 之间 FC 的相关性仅捕捉线性关系,不适合表征高阶或非线性特征(Shojaee et al., 2019)。此外,将数据折叠成特征向量(向量化)会丢弃脑区的空间信息(Kong et al., 2019)。此外,传统的分类算法,如支持向量机(SVM)(Cortes and Vapnik, 1995)、随机森林(Liaw and Wiener, 2002)和朴素贝叶斯(Rish, 2001)属于浅层分类