摘要:许多应用,如脑机接口、睡眠监测器和智能报警器、情绪监测器等,都使用脑电图 (EEG) 数据的实时分析和处理。本研究使用 MATLAB Simulink 对单通道和多通道 EEG 数据进行实时分析和处理,实时将它们分类为脑波成分:alpha、beta、delta 和 theta,并实时计算每个脑波成分的能量比。我们使用 Simulink 基本库中的基本模块和 DSP System Toolbox 中的信号处理模块来构建模型。我们的模型有四个主要功能:绘制和预处理数据、脑波成分分类、能量比计算和结果可视化。连接和配置模块设置后,我们便完成了模型。然后,我们使用单通道 EEG 数据来模拟模型,并将数据实时分类为四个不同的脑波成分:alpha、beta、delta 和 theta。通过本研究,我们开发了一整套脑电信号实时分析处理系统,该系统可应用于脑机接口、睡眠监测、智能报警、情绪监测等多种应用。关键词:EEG、脑电图、脑波分量、Simulink、实时、处理
摘要 - 运输对于现代生活至关重要,但是传统的燃烧引擎正在逐渐过时。全电动汽车正在快速取代汽油和柴油动力汽车,因为它们的清洁程度更高。全电动汽车(EV)的排气排放零,使环境更好。首先,电池的容量或可以存储的电量数量决定了电动汽车的范围。在千瓦时(千瓦时)表示。它确定了车辆电动机和其他组件可用的能源储备,可与燃烧动力汽车中的燃油箱大小相当。因此,电动汽车的其余范围取决于在任何特定时间电池中的能量量。该项目旨在根据电池充电来计算电动汽车范围。MATLAB模拟是该项目的基础。该项目的用户可以使用它来解决与电池充电相关的问题,并防止随后的充电与相关的不便。当需要充电车辆的电池时,我们可以保持速度恒定以覆盖必要的距离。
桌面仿真。Simulink 中的桌面仿真使您能够验证 BMS 设计的功能方面,例如充电放电行为(使用单电池等效电路公式)、电子电路设计以及反馈和监督控制算法。在桌面上,使用行为模型模拟电池系统、环境和算法。例如,您可以探索主动与被动电池平衡配置和算法,以评估每种平衡方法对给定应用的适用性。您可以使用桌面仿真探索新的设计理念,并在制作硬件原型之前测试多种系统架构。您还可以在桌面仿真中执行需求测试,例如通过验证在检测到隔离故障时接触器是否无法打开或关闭。
MATLAB SIMULINK:其缩写MATLAB或“ Matrix Laboratory”已知的软件平台是一种功能强大且适应能力的工具,对数据分析,科学,工程和数学产生了深远的影响。由Mathworks创建的 MATLAB以其在几个字段,交互式环境,计算能力和数据可视化功能上的多功能性而闻名。 其高级编程语言使用户可以轻松处理具有挑战性的数学和数值问题,并提供了广泛的内置功能库,这些功能构成了调查,创造力和解决问题的基础。 MATLAB提供了一个交互式且用户友好的环境,可促进快速算法创建,数据探索和原型设计,无论是通过其集成的编程环境还是命令行界面。MATLAB以其在几个字段,交互式环境,计算能力和数据可视化功能上的多功能性而闻名。其高级编程语言使用户可以轻松处理具有挑战性的数学和数值问题,并提供了广泛的内置功能库,这些功能构成了调查,创造力和解决问题的基础。MATLAB提供了一个交互式且用户友好的环境,可促进快速算法创建,数据探索和原型设计,无论是通过其集成的编程环境还是命令行界面。
摘要:本文介绍了一个能够通过终生预后扩展的私人家庭的能量系统的模型。该能源系统旨在使用由氢气单元和锂离子电池组成的混合储能系统完全覆盖私人家庭的全年能源需求。在夏季,由PV剩余用质子交换膜(PEM)产生氢,然后存储在氢气罐中。主要在冬季,就缺乏PV能量而言,氢被燃料电池转化为电和热量。该模型是在MATLAB/SIMULINK中创建的,并且基于实际输入数据。还考虑了热量需求,并被热泵覆盖。模拟期是解决能源生产和需求的季节性的整整一年。由于高初始成本,这种能源系统的寿命至关重要。因此,该模型是通过终生预测扩展的,以优化尺寸,目的是基于氢的能量系统的寿命延长。生命周期的影响因素是根据文献综述确定的,并将其整合在模型中。进行了一项广泛的参数研究,以评估有关三个组件的能量平衡和寿命的不同尺寸,即电机,燃料电池和锂离子电池。结果证明了整体建模方法的好处,并启用了有关系统使用资源,寿命和自助率的设计优化。
在构建嵌入式系统(更具体地说是控制器)时,基于模型的设计如今已不可避免。在可用的模型语言中,同步数据流范式(如 MATLAB Simulink 或 ANSYS SCADE 等语言中实现的)已成为关键嵌入式系统行业的主流。这两个框架都用于设计控制器本身,但也提供代码生成方法,从而能够更快地部署到目标,并在设计过程的早期阶段(模型级别)更轻松地执行 V&V 活动。同步模型还通过使用同步观察器简化了正式规范的定义,使用工程师掌握的同一种语言将需求附加到模型上,并使用模拟方法或代码生成工具。然而,很少有研究涉及从较低级别的模型或代码自动合成 MATLAB Simulink 注释。本文介绍了从 Lustre 模型到真正的 MATLAB Simulink 的编译过程,无需依赖外部 C 函数或 MATLAB 函数。此转换基于 Lustre 到命令式代码的模块化编译,并在生成的 Simulink 模型中保留输入 Lustre 模型的层次结构。我们实施了该方法并使用它来验证编译工具链,将 Simulink 映射到 Lustre,然后映射到 C,这要归功于等效性测试和检查。从 Lustre 到 Simulink 的反向编译还提供了自动生成 S
锂离子电池最近由于其许多优势而成为车辆应用研究的重点。锂离子电池具有比其他二级电池更高的特异性能量,更好的能量密度和更低的自我放电速率,这使其适合电动汽车和混合动力汽车。尽管如此,担心安全性,成本,充电时间和回收利用已阻碍了锂离子电池的商业用法,以进行自动应用。开发有效的电池系统需要在模拟平台上进行精确的电池模型。在这项研究中,电池模型是用MATLAB/SIMULINK内置的。有两个变体可用:一个具有串联的平行电池布置和一个无配置的单个型号。提供并详细说明了所提出的模型的结构。基于测试结果,已验证了开发的电池模型。一个比较表明,创建的模型可以准确预测电流,电压和功率性能。该型号是为Eaton机电电池锂离子18650电池设计的,但据说与其他类型的电池一起使用。模拟考虑了电池的充电状态,电流,电压和电源要求。
摘要。本研究重点是使用MATLAB Simulink与电池的超级电容器(SC)的建模,模拟和杂交。混合系统旨在改善能源输送,减少电荷 - 放电周期并延长电池的寿命。该方法涉及在MATLAB SIMULINK环境中创建SC和电池的详细模拟模型。在不同的负载条件下分析了系统的行为,以评估其在能源存储和功率传递方面的性能。该混合动力系统显示出有望在电动汽车,可再生能源存储和其他高需求应用中使用的潜力。总而言之,SC与电池的杂交增强了能源管理系统,为改善现代储能技术的寿命和性能提供了可行的解决方案。建议使用MATLAB Simulink进行进一步的研究以优化电池。
摘要:在真实的三维虚拟环境中进行飞行测试越来越多地被认为是一种安全且经济高效的评估飞机模型及其控制系统的方法。本文首先回顾并比较了迄今为止最流行的个人计算机飞行模拟器,这些模拟器已成功与 MathWorks 软件对接。这种联合仿真方法可以将 Matlab 工具箱的功能优势(包括导航、控制和传感器建模)与专用飞行仿真软件的高级仿真和场景渲染功能相结合。然后可以使用此方法验证飞机模型、控制算法、飞行处理特性,或根据飞行数据执行模型识别。然而,缺乏足够详细的分步飞行联合仿真教程,而且很少有人尝试同时评估多种飞行联合仿真方法。因此,我们使用 Simulink 和三种不同的飞行模拟器(Xplane、FlightGear 和 Alphalink 的虚拟飞行测试环境 (VFTE))演示了我们自己的分步联合仿真实现。所有这三种联合仿真都采用实时用户数据报协议 (UDP) 进行数据通信,每种方法都有各自的优势,具体取决于飞机类型。对于 Cessna-172 通用航空飞机,Simulink 与 Xplane 的联合仿真演示了成功的虚拟飞行测试,可以精确地同时跟踪高度和速度参考变化,同时在任意风况下保持侧倾稳定性,这对单螺旋桨 Cessna 来说是一个挑战。对于中等续航能力的 Rascal-110 无人机 (UAV),Simulink 使用 MAVlink 协议与 FlightGear 和 QGroundControl 连接,从而能够在地图上精确跟踪无人机的横向路径,并且此设置用于评估基于 Matlab 的六自由度无人机模型的有效性。对于较小的 ZOHD Nano Talon 微型飞行器 (MAV),Simulink 与专为此 MAV 设计的 VFTE 连接,并与 QGroundControl 连接,以使用软件在环 (SIL) 仿真测试先进的基于 H-infinity 观察器的自动驾驶仪,从而在有风条件下实现稳健的低空飞行。然后,最终使用控制器局域网 (CAN) 数据总线和带有模拟传感器模型的 Pixhawk-4 迷你自动驾驶仪将其扩展到 Nano Talon MAV 上的硬件在环 (HIL) 实现。