支持各种类型的测距和定位:基于飞行时间(ToF)的双向测距(TWR)、到达时间差(TDoA)、3D 到达角(3D AoA)
*A. Stanco 等人,用于实用量子通信系统的多功能并发 FPGA 架构,IEEE 量子工程学报,第 3 卷,第 1-8 页,编号 6000108(2022 年)
项目描述 闭环可穿戴脑电图处理系统包括信号收集前端、数据预处理和活动识别信号处理单元以及意图呈现执行器。其中,处理单元在意图识别性能指标中起着关键作用,包括能耗、推理延迟以及识别准确性。Greenwaves Technologies 的 GAP9 为 AI 应用提供了一流的超低能耗神经网络性能,因此可以成为从脑电图信号中读取意图的完美候选。此外,GAP9 还具有用于高精度信号预处理的 DSP 单元、高功率效率和高源时钟以实现快速响应。该提案旨在测试 GAP9 上闭环电机想象识别的整体性能,您将有非常好的机会巩固您在机器学习、边缘设备推理以及脑电图相关科学方面的知识。要求/知识...
摘要 —ZuSE-KI-Mobil (ZuKIMo) 是一个国家资助的研究项目,目前处于中期阶段。ZuKIMo 项目的目标是开发一个新的片上系统 (SoC) 平台和相应的生态系统,以实现具有特定要求的高效人工智能 (AI) 应用。借助 ZuKIMo,我们专门针对移动领域的应用,即自动驾驶汽车和无人机。初始生态系统由来自德国学术界和工业界的七个合作伙伴组成的联盟建立。我们围绕一种新颖的 AI 加速器设计开发 SoC 平台及其生态系统。可定制的加速器从头开始构思,以满足雄心勃勃的用例所产生的功能和非功能性要求。计划于 2023 年采用 22 nm FDX 技术进行流片。除了片上系统硬件设计本身之外,ZuKIMo 生态系统还旨在提供软件工具,以便轻松部署新用例和硬件-CNN 协同设计。此外,在安全关键型应用(如我们的移动用例)中,AI 加速器必须满足安全要求。因此,我们研究了用于深度神经网络 (DNN) 故障分析的新设计方法,并介绍了我们用于 AI 加速器的新冗余机制。索引术语 — 片上系统、AI 加速器、开发方法、故障模拟、功能安全
• 提高音质:根据蓝牙技术联盟的说法,LE Audio 包含一种名为 LC3 的新型低功耗音频编解码器,与传统 SBC 编解码器相比,即使比特率降低 50%,也能提供更好的音质。• 延长电池寿命:借助低功耗 LC3 音频编解码器,未来的无线耳机将拥有更长的音频播放电池寿命。• 多流音频:LE Audio 可在 iPhone 或 Mac 等源设备与未来的无线耳机之间传输多个同步音频流。这将允许单独的左右耳机各自与支持 LE Audio 的设备建立蓝牙音频连接,以提高可靠性。• 一次将多对无线耳机连接到 iPhone
摘要 — 在本文中,我们使用质子束描述了 NVIDIA Xavier 系列片上系统 (SoC) 中的两个嵌入式 GPU 设备。我们比较了分别针对商业和汽车应用的 NVIDIA Xavier NX 和工业设备。我们使用不同的功率模式评估了两个模块及其子组件(CPU 和 GPU)的单粒子效应 (SEE) 率,并首次尝试使用其基于 ARM 的系统中包含的在线测试工具来识别它们的确切来源。我们的结论是,SoC 的 CPU 复合体中最敏感的部分是各种缓存结构的标签阵列,而在 GPU 中没有观察到任何错误,可能是因为在辐射活动期间,与应用程序的 CPU 部分相比,它的执行速度更快。
摘要 — 在过去的几年中,多处理器片上系统 (MPSoC) 设计的复杂性急剧增加。这使得产品验证非常具有挑战性和欺骗性。为了应对设计复杂性,与系统 Verilog 断言 (SVA) 相关的通用验证方法 (UVM) 被广泛用于构建揭示设计问题的强大验证环境。这项工作引入了一种以两种模式验证 SoC 设计块的新方法:存根模式,其中服务于被测设计 (DUT) 的所有块都作为 UVM 主动和被动代理实现;物理硬件模式,其中所有块都与固件驱动程序一起物理运行。在实施所提出的验证方法时,研究了一个完整的 SoC 系统,包括:处理器、控制器和加密引擎。功能检查和覆盖率收集分别通过 UVM 记分板和订阅者执行。所提出的方法提供了在仿真阶段同时验证硬件和固件的能力。
摘要 — 片上系统 (SoC) 的使用和应用日益广泛,导致这些架构发生了巨大的现代化。对于现代 SoC 设计,由于包含大量复杂且异构的知识产权 (IP) 及其隐私保护声明,因此存在各种高度敏感的资产。必须保护这些资产免受任何未经授权的访问和各种攻击。获取此类资产的攻击可以通过不同的来源完成,包括恶意 IP、恶意或易受攻击的固件/软件、不可靠和不安全的互连和通信协议以及通过功率/性能配置文件的侧信道漏洞。任何未经授权访问此类高度敏感的资产都可能导致原始设备制造商 (OEM) 的公司机密泄露或最终用户的身份被盗。与 SoC 架构的功能测试和验证的巨大进步不同,安全验证仍在兴起,学术界和工业界对此的努力很少。不幸的是,SoC 架构的现代化与其安全验证方法之间存在巨大差距。由于现代电子设计自动化 (EDA) 工具中缺乏自动化的 SoC 安全验证,本文全面概述了作为 SoC 安全验证过程基础必须实现的要求。通过回顾这些要求,包括创建统一的 SoC 安全验证语言、定义安全策略、制定安全验证等,我们提出了利用模糊测试、渗透和 AI 测试等自改进技术进行安全验证的实现。我们评估了所有挑战和解决可能性,并提供了通过这些自改进技术实现 SoC 安全验证的潜在方法。
注释: • 上电至功能时间基于 IO 组的 VDDI/VDDAUX 在 VDD/VDD18/VDD25 之前或之后通电的情况。IO 组启用时间从 VDD/VDD18/VDD25 的断言时间开始测量。如果 IO 组的 VDDI/VDDAUX 在 VDD/VDD18/VDD25 之后通电充足,则 IO 组启用时间从 VDDI/VDDAUX 的断言开始测量。在这种情况下,IO 操作由 BANK_#_VDDI_STATUS 的断言指示,而不是相对于 FABRIC_POR_N 否定进行测量。 • AUTOCALIB_DONE 的断言可以在 DEVICE_INIT_DONE 的断言之前或之后发生。AUTOCALIB_DONE 断言所需的时间取决于: – VDD/VDD18/VDD25 通电后 VDDI/VDDAUX 上升的时间。 – 指定用于自动校准的每个 IO 组的 VDDI 斜坡时间。 – 需要对 PCIe、SerDes 收发器和结构 LSRAM 执行多少自动初始化。 – 如果任何指定用于自动校准的 IO 组未在自动校准超时窗口内打开其 VDDI/VDDAUX,则每当 VDDI/VDDAUX 随后打开时,它都会自动校准。为了在此类 IO 组上获得准确的校准,需要启动重新校准(使用结构中的 CALIB_START)。 • 在 DEVICE_INIT_DONE 或 AUTOCALIB_DONE 断言后约 100 个系统控制器时钟周期,SUSPEND_EN 断言(如果启用了挂起模式)。 • 这两个设备系列都具有内置篡改检测功能,用于监控电压供应和标志以检测最小或最大阈值。这些标志仅在设计初始化后有效,而不是在 POR 期间有效。如果启用了系统控制器挂起模式,则必须锁存 TAMPER 标志,以便在 DEVICE_INIT_DONE 置位之后、SUSPEND_EN 置位之前,结构设计可以读取这些值。