电子邮件:paredes.g@aluno.ifsp.edu.br摘要钻探浪费的适当管理,尤其是页岩振动器的残留固体中的流体含量,仍然是石油和天然气运营中的一项关键挑战。 依靠实验室分析的传统方法引入了重大延迟,从而阻碍了实时过程优化。 本研究提出了一个基于人工神经网络(ANN)的虚拟传感器,以实时预测振动筛选残留固体中的流体含量。 在不同的操作参数下,从工业页岩振动器系统中收集了实验数据,包括运动速度,进料流量和屏幕倾斜度。 使用TensorFlow开发了多层感知器模型,该模型具有输入归一化,辍学正则化和随机梯度下降的优化训练。 ANN体系结构达到的平均绝对误差为0.03,损失为0.002,证明了强大的收敛而不拟合。 通过t检验进行的统计验证证实,预测值和实验值之间没有显着差异(测试数据的p值为0.67,整个数据集为0.85)。 模型在稳定的操作条件下的准确性可以连续监视而无需其他硬件,从而解决了行业对延迟实验室的依赖电子邮件:paredes.g@aluno.ifsp.edu.br摘要钻探浪费的适当管理,尤其是页岩振动器的残留固体中的流体含量,仍然是石油和天然气运营中的一项关键挑战。依靠实验室分析的传统方法引入了重大延迟,从而阻碍了实时过程优化。本研究提出了一个基于人工神经网络(ANN)的虚拟传感器,以实时预测振动筛选残留固体中的流体含量。在不同的操作参数下,从工业页岩振动器系统中收集了实验数据,包括运动速度,进料流量和屏幕倾斜度。使用TensorFlow开发了多层感知器模型,该模型具有输入归一化,辍学正则化和随机梯度下降的优化训练。ANN体系结构达到的平均绝对误差为0.03,损失为0.002,证明了强大的收敛而不拟合。通过t检验进行的统计验证证实,预测值和实验值之间没有显着差异(测试数据的p值为0.67,整个数据集为0.85)。模型在稳定的操作条件下的准确性可以连续监视而无需其他硬件,从而解决了行业对延迟实验室的依赖
原子探针断层扫描通常用于以原子分辨率表征固体中的元素分布。本文回顾并讨论了该技术局部探测化学键的潜力。两个过程表征了激光辅助场发射中的键断裂,分子离子概率 (PMI),即分子离子蒸发而不是单个(原子)离子的概率,以及多重事件概率 (PME),即在激光或电压脉冲激发下相关场蒸发多个碎片。本文证明了可以根据键断裂(即 PME 和 PMI 值)清楚地区分具有金属键、共价键和亚价键的固体。这些发现为理解和设计先进材料开辟了新途径,因为它们允许在纳米尺度上量化固体中的键,正如将在几个示例中展示的那样。这些可能性甚至可以证明将当前方法称为键合探针断层扫描 (BPT)。
用于确定TOC的系统参数,应用了TOC差异方法。TOC等于TC和TIC之间的差异:TOC = TC - TIC。因此,必须确定每个样品的TC和TIC。通过使用“自动”和自动固体Sampler FPG 48的多EA 4000 C进行了两项测量。根据分析使用两个称重样品等分试样。用40%H 3 PO 4自动将第一个样品等分试样自动酸化,释放了来自碳酸盐的CO 2,并直接测量了TIC。使用第二艘船,将第二个样品等分试样引入1,200°C的电阻炉中,并在纯氧气中完全消化。在两种运行中,测量气体均干燥并清洁,并通过NDIR光谱法测量碳含量。TOC的计算是由设备的多翼软件自动执行的。
固体对低温的光冷却是一个重要的开放挑战。当前的方法[1-3]是稀土掺杂玻璃中的抗荧光[4]。在此过程中,稀土离子会吸收光,从而产生激发的电子状态,然后在以较高频率重新调用光之前吸收声子。尽管非辐射衰减和背景吸收的竞争加热,但仍达到了低至91 K的温度[3]。这已达到可以有效吸收的声子设置的50 - 100 K [4]的基本极限。相同的特征声子能量也限制了在室温半导体中报道的光学声子的吸收可能的冷却[5,6](另见参考文献[7]),尽管已经考虑使用各种技术来提高性能以及不同的冷却方案[2,3,6,8 - 10],但它们并未解决这个问题。达到较低温度的一条途径可利用半导体中的连续电子分散体[11-15],但尚未达到[7]。在这封信中,我们提出了一种机制,使用合适的缺陷状态的Quasiresonant激发可以克服固态激光冷却的温度底。我们专注于钻石的IV组颜色中心,尤其是带负电荷的硅空缺缺陷(SIV)。该缺陷的状态包括一个地面状态和激发状态歧管,并在两者之间进行偶极运动光学转变[16-19]。对于较弱的驾驶,此过程非常敏感。在足够低的温度下,光谱显示了四条线,其中两条可以互环驱动以产生一种抗孔的形式。但是,为了更强的驱动动力学,动力学会受到激光态的状态而不是原始的电子本征态的控制。通过自动镇效应[20]形成这些状态,导致更复杂的冷却过程,许多
摘要:空间退化是在许多材料中发现的复杂电子,几何结构和磁性结构的原因,这些材料更具代表性的示例是KCUF 3。在文献中,该晶格的特性通常通过基于superexchange相互作用的Kugel -khomskii模型来解释。在这里,我们提供了严格的理论和计算参数,以证明结构和磁性本质上是由电子 - 振动(振动)相互作用引起的。此外,根据ÖPIK和PRYCE的工作,我们表明,晶格(均质应变)和基序(声子)扭曲之间的耦合对于了解晶格的主要稳定构型至关重要。使用此信息,我们预测了KCUF 3中的一个新的低能阶段,该阶段可以强烈改变其特性,并为如何通过应变工程稳定它提供指导。
(1)晶体结构:识别分子和固体的结构对称性对于了解其物理和某些化学特性的性质很重要。分子对称性由一个点组总结,为此,所有对称元素(点,轴,平面)在一个固定点上相交,该固定点被分配为空间坐标系的起源。例如,考虑使用点组𝒟6h。起源在没有原子的分子中心。其一些对称元素包括六倍旋转轴和六个垂直镜面;相应的操作是由2π/6(60°)的倍数旋转和反射。晶体固体在空间中的多个点显示旋转对称性,因为这些结构也表现出转化周期性,这是由晶格描述的。旋转和翻译对称操作的组合产生了一个空间群。考虑石墨烯的结构,该结构由融合的六元环的平面网络组成。如果忽略了平面中结构的终止,则每个六角形的中心都有六倍的旋转轴,并且每个碳原子都与三倍的旋转轴相交。翻译周期性由连接每个六角形中心的单位单元(平行四边形)表示。作为另一个例子,Cenic 2的结构包含[NIC 2]的平面与[NIC 2]平面的七元环上方和以下的CE原子平面交替。在沿堆叠方向的该结构的投影中,单位单元格是一个矩形,垂直镜面显而易见。此外,这种晶体结构还有另一种类型的对称性操作,对于任何分子:滑动反射而不会发生,其中通过镜面的反射是平行于(沿着(沿着)反射平面的(“滑行”)的位移。自身反射或自身位移都不是对称操作,但是两个操作的组合是用于Cenic 2结构。
摘要:铅卤化物钙钛矿材料和光学谐振器之间的强耦合使这些新兴半导体的光物理特性既可以控制,又可以观察基本物理现象。然而,实现光学定义明确的激子跃迁的光学质量钙钛矿量子点(PQD)膜的困难阻止了这些材料中强光耦合的研究,这是光电领域的核心。在本文中,我们证明了在金属谐振器中多腔激素极化子的室温下形成,它们嵌入了高度透明的邻苯二颗元素量子点(CSPBBR 3 -QD)固体,这通过对系统的吸收和发射特性的重新配置来揭示。我们的结果表明,在CSPBBR 3 -QD光腔中,似乎不存在或补偿Biexciton相互作用或大型极性形成(通常被调用以解释PQD的特性)的影响。我们观察到,强耦合可以显着降低光发射线宽度,以及光吸收的超快调制,可通过激发通量来控制。我们发现,北极星与深色态储层的相互作用在确定杂交光量子点固体系统的发射动力和瞬时吸收特性方面起着决定性的作用。我们的结果应作为将来对PQD固体作为极化材料进行研究的基础。关键字:量子点固体,钙钛矿,强烈的激子 - 光子耦合,偏振子,光学微腔
摘要:铅卤化物钙钛矿材料和光学谐振器之间的强耦合使这些新兴半导体的光物理特性既可以控制,又可以观察基本物理现象。然而,实现光学定义明确的激子跃迁的光学质量钙钛矿量子点(PQD)膜的困难阻止了这些材料中强光耦合的研究,这是光电领域的核心。在本文中,我们证明了在金属谐振器中多腔激素极化子的室温下形成,它们嵌入了高度透明的邻苯二颗元素量子点(CSPBBR 3 -QD)固体,这通过对系统的吸收和发射特性的重新配置来揭示。我们的结果表明,在CSPBBR 3 -QD光腔中,似乎不存在或补偿Biexciton相互作用或大型极性形成(通常被调用以解释PQD的特性)的影响。我们观察到,强耦合可以显着降低光发射线宽度,以及光吸收的超快调制,可通过激发通量来控制。我们发现,北极星与深色态储层的相互作用在确定杂交光量子点固体系统的发射动力和瞬时吸收特性方面起着决定性的作用。我们的结果应作为将来对PQD固体作为极化材料进行研究的基础。关键字:量子点固体,钙钛矿,强烈的激子 - 光子耦合,偏振子,光学微腔