5 实用直流 SQUID:配置和性能 171 5.1 简介 172 5.2 直流 SQUID 基本设计 175 5.2.1 非耦合 SQUID 175 5.2.2 耦合 SQUID 177 5.3 磁强计 186 5.3.1 概述 186 5.3.2 用于高空间分辨率的磁强计 187 5.3.3 用于高场分辨率的磁强计 188 5.4 梯度计 193 5.4.1 概述 193 5.4.2 薄膜平面梯度计 195 5.4.3 线绕轴向梯度计 198 5.5 1/ f 噪声和在环境场中的操作 200 5.5.1 关于 1/ f 噪声的一般说明 200 5.5.2 临界电流波动 200 5.5.3 热激活涡旋运动 201 5.5.4 涡旋的产生 203 5.5.5 降低涡旋运动产生的 1/ f 噪声 205 5.5.5.1 概述 205 5.5.5.2 涡旋钉扎 205 5.5.5.3 窄线宽器件结构 206 5.5.5.4 通量坝 207 5.6 其他性能下降效应 208 5.6.1 磁滞 208 5.6.2 射频干扰 209 5.6.3 温度波动和漂移 210
从底部的拖网调查中报告了两组鱿鱼的观察:治安法官Armhook Squid(Berryteuthis Magister)和身份不明的鱿鱼。成人B. Magister经常遇到底部拖网调查,因为它们的尺寸相对较大(地幔长度约为28厘米; Sealifebase.com)。较小的物种和少年鱿鱼主要在地表水附近发现。在2023年期间,治安法官Armhook Squid的估计丰度和生物量高于2021年的估计值,并且未识别的鱿鱼的丰度估计值接近历史高(图41)。B. magister和身份不明的鱿鱼发生率的历史趋势正在增加,每个物种的2023患病率在或接近历史最高点(图42)。B. Magister分布在整个果阿(图43),但是在200-300米的深度,在Kodiak,Chirikof和Shumagin中观察到了最大的生物量(图44)。
鲁特· R. 达丰塞卡 1, 2,*, 阿尔瓦里娜·库托 3, 安德烈· M. 马查多 4, 布罗纳·布雷约娃 5, 卡罗琳· B. 阿尔贝丁 6, 菲利佩·席尔瓦 4, 36, 保罗·加德纳 7, 托比亚斯·巴里尔 8, 亚历克斯·海沃德 8, 亚历山大·坎波斯, 安杰洛 44. go Barrio-Hernandez 9, 亨克-扬·霍文 10, 里卡多·塔富尔-希门尼斯 11, 钟楚红 12, 芭芭拉·弗拉扎奥 4, 13, 本特·彼得森 14, 15, 费尔南多·佩纳洛萨 16, 弗朗西斯科·穆萨基亚 17, 亚历山大· Jr. 18,Hugo os ́orio 19,20,21,Inger Winkelmann 22,Oleg Simakov 23,Simon Rasmussen 24,M。ZiaurRahman 25,Davide Pisani 26,Jakob Vinther 26,Erich Jarvis 27,Erich Jarvis 27,Guojie,Guojie,Guojie,13,33,33,33,33,33,33,Jan M.Strugnell 34,34,34,34,34,34,34,L. IO 29,Qiye Li 37,Sara Rocha 3,38,Agostinho Antunes 4,36,39,Remo Yu B 41,42,Tomas Vinar 5,Blagoy Blagoy Blagoy Ev 9,Thomas Sicheritz-Ponten 14,15
摘要 超导量子干涉装置 (SQUID) 传感器用于感测各种物理量的变化,这些变化可转化为穿过 SQUID 环路的磁通量的变化。我们开发了一种新型 SQUID 阵列直流电流传感器。该装置基于一系列相同的直流 SQUID 阵列。要测量的输入信号电流紧密但不均匀地耦合到 SQUID 阵列元件。选择耦合到各个阵列元件的输入信号,以便获得单值、非周期性的总电压响应。可以避免或补偿会影响传感器电压响应的各个 SQUID 中的磁通偏移。我们介绍了用于直流 (SQUAD) 电流传感器的 SQUID 阵列电流传感器性能的模拟和实验结果。对于 L In < 3 nH 的输入电感,在 0–25 Hz 的测量带宽内实现了 < 1 nA 的直流电流分辨率。
本文回顾了 SQUID 在最后一个领域的应用,从 SQUID 的自然偏爱领域——电压测量开始,结合了约瑟夫森效应的普适性测试和流量子的确定。然后进行电阻和电流测量,其中还包括量子霍尔效应的通用性测试和单电子器件的首次计量测量,以及涉及高电流 (100 A) 或粒子束加载的测量。所有这些电阻和电流测量都是基于使用一种出色的仪器,即低温电流比较器,它构成了本文的核心。所有的设计元素都在那里给出。还涵盖了 SQUID 在测温、X 和 Γ 光谱以及微波测量领域的应用。最后,本文阐述了 SQUID 新用途的前景,这些新用途完全适合即将到来的计量变革的背景。
本文以马特·泰比的吸血乌贼比喻来描述金融化,探讨金融化的经济学和政治经济学。本文有四点创新。首先,它关注“吸血乌贼”过程的机制,即金融化在经济中轮换,使部门资产负债表上充斥着债务。其次,它确定了中央银行的关键作用,中央银行是该体系的关键,现在实际上是私营部门债务价值和流动性的担保人。如果没有他们的支持,经济体系很可能早就在 1929 年大萧条中崩溃了。第三,本文认为金融化强加了一种政策锁定。第四,它认为金融化改变了大众的态度和理解,从而尽管经济结果不佳,但仍获得了政治支持。实际上,金融化的政治与经济相辅相成。本文最后总结了一些观点,即为什么主流宏观经济学没有与金融化相当的构造,并讨论了经济目前所处的未知领域。关键词:金融化、债务、中央银行、锁定。JEL 参考文献:E10、E44、E58、G18。
小球形头足动物通过腺苷脱氨基表现出异常广泛的mRNA,但尚不清楚基本机制。由于作用于RNA(ADAR)酶的腺苷脱氨酶会催化这种形式的RNA编辑,因此头足类直系同源物的结构和功能可能会提供线索。最近的基因组测序项目提供了蓝图,以全面互补。我们实验室的先前结果表明,Squid表达了一个ADAR2同源物,具有两个名为SQADAR2A和SQADAR2B的剪接变体,并且这些消息经过广泛编辑。基于章鱼和鱿鱼基因组,转录组和cDNA克隆,我们发现在小卵形中表达了另外两个ADAR同源物。第一个与脊椎动物ADAR1直系同源。与其他ADAR1不同,它包含一个新型的N末端结构域,为641 AA,预测为无序,包含67个磷酸化基序,并且具有氨基酸组成,丝氨酸和碱性氨基酸的氨基酸组成异常高。编码sqadar1的mRNA本身是广泛编辑的。也存在于任何脊椎动物同工型的直系同源的sqadar/d-like酶。编码SQADAR/D类的消息未编辑。使用重组SQADAR的研究表明,仅在完美的双链dsRNA和鱿鱼钾通道mRNA底物上,只有SQADAR1和SQADAR2是活跃的腺苷脱氨酶。sqadar/d样对这些底物没有活性。对这些底物没有活性。总体而言,这些结果揭示了SQADARS中的一些独特特征,这些特征可能会导致头足类动物中观察到的高级RNA回收。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。