摘要 — 量子置换垫或 QPP 最早由 Kuang 和 Bettenburg 于 2020 年提出 [15]。QPP 是一种由多个 n 量子比特量子置换门组成的通用量子算法。作为一种量子算法,QPP 既可以在量子计算系统中实现为对 n 量子比特状态进行操作以进行转换的量子电路,也可以在由 n 位置换矩阵垫表示的经典计算系统中实现。QPP 具有两个独特的特点:巨大的香农信息熵和置换矩阵之间的非交换性或广义不确定性原理。置换变换是输入信息空间和输出密文空间之间的双射映射。这意味着,由于不确定性关系,QPP 具有可重用的香农完全保密性。QPP 是希尔伯特空间上一次性垫或 OTP 的推广,而 OTP 是伽罗瓦域上 QPP 的简化。基于此,本文研究了一种 AES 变体,将 AES 的 ShiftRows 和 MixColumns 与 QPP 结合起来,形成一种量子安全轻量级密码体制,称为 AES-QPP。AES-QPP 将 SubBytes 和 AddRoundKey 与 16 个 8 位置换矩阵的相同 QPP 结合起来,本质上 SubBytes 是一个特殊的 8 位置换矩阵,AddRoundKey 是从 XOR 操作中选择的 16 个 8 位置换矩阵。通过随机选择 16 个带有密钥材料的置换矩阵,AES-QPP 可以容纳总共 26,944 位香农熵。它不仅提高了对差分和线性攻击的安全性,而且还将轮数大大减少到 5 轮。AES-QPP 可能是量子安全轻量级密码体制的良好候选者。
摘要:数据存储和通信的系统必须是安全的,并且加密算法对此至关重要。在这项工作中,比较了Rivest-Shamir-Adleman(RSA)算法和高级加密标准(AES)方法。我们根据AES和RSA加密算法的数学原理,安全特征,性能特征和实际考虑对AES和RSA加密算法进行了全面比较。我们还讨论了他们在各种情况下的优势和局限性,向信息安全从业者和决策者提供了有见地的信息。通过分析和对比AES和RSA的关键方面,我们旨在为理解这些广泛使用的加密算法做出贡献,并协助为特定的安全要求选择适当的算法。我们讨论了这两种算法之间的数学和算术比较,并在安全性,速度和实施复杂性方面评估它们的性能。我们的分析表明,尽管AE为对称密钥加密提供了更好的性能,但RSA为非对称密钥加密提供了安全的机制。我们还强调,根据应用程序的特定需求,选择正确的加密算法是多么重要。关键字:加密算法,RSA,安全性,速度,实现复杂性,AES。1。简介每天向数百万用户发送到数百万用户的大量数据强调了安全通信渠道的关键作用。随着越来越多的数据被传输并以电子方式保存,确保数据安全性比以往任何时候都重要[10]。加密算法广泛用于在通信和存储系统中保护数据。选择适当的加密算法对于提供足够的安全性并确保特定应用程序的最佳性能至关重要[3]。高级加密标准(AES)和激烈的Shamir-Adleman(RSA)算法是两种最流行的加密方法。RSA使用不对称的密钥加密方法,而AES使用对称键。AES和RSA都有其优势和局限性,并且选择适当的算法需要对其数学,算法和性能方面进行透彻的了解[5]。国家标准技术研究所(NIST)定义了AES算法,以其在软件和硬件实施方面的效率而闻名,使其非常适合具有严格性能要求的应用。但是,与AES相比,RSA技术的加密和解密速度可能较慢。这是因为它基于分解大量数的数学复杂性,这在键分布和身份验证方面提供了鲁棒性。此外,RSA通常用于密钥交换和数字签名,而AE通常用于对称大量数据的对称密钥加密。在本文中,我们根据其数学原理,安全特征,绩效特征和实际考虑对AES和RSA加密算法进行了全面比较。2。国家标准技术研究所(NIST)于1998年创建了它,以扮演数据加密标准(DES)的角色。我们还讨论了他们在各种情况下的优势和局限性,为信息安全领域的决策者和从业者提供了宝贵的见解。通过分析和对比AES和RSA的关键方面,我们旨在为理解这些广泛使用的加密算法做出贡献,并协助为特定的安全要求选择适当的算法。材料和方法提供了一种安全的对称密钥加密算法,该算法提供了一种安全的加密和解密数据的方法,称为高级加密标准(AES)。AES是一个在固定长度数据块上运行的块密码。它使用对称键进行加密和解密,这意味着两个操作都使用相同的密钥。AES支持128、192和256位的关键长度,其安全性取决于密钥长度[1]。AES使用替代 - 帝国网络(SPN)结构,该结构由几轮操作组成。在每个回合中,AES将四个转换应用于输入块:字节替换(Subbytes),行移动(shiftrows),列混合(MixColumns)和键添加(AddRoundKey)[1]。这些转换旨在提供混乱和扩散,这是任何加密算法的重要特性。AE的数学分析重点介绍了SPN结构的特性,例如其关键时间表,扩散和