a b s t r a c t我们通过进行轴心对称辐射 - 磁性水力动力学模拟了70 M⊙星的重力崩溃,该轴向辐射 - 磁性水力动力学模拟了70 M⊙恒星具有两分矩的多矩中准中性相关性,从而,在完全相对于一般性相关的情况下,通过进行70 M⊙星的重力崩溃,从而对黑洞(BH)形成及其随后的爆炸性活性的影响进行了研究,从而对黑洞(BH)形成(BH)形成及其随后的爆炸活性的影响。由于其密集的恒星结构,即使强烈磁化模型在BH形成之前经历了所谓的磁爆炸,所有模型也无法成为最终的BH形成。在强磁模型中观察到的一个有趣的现象是在BH后形成中形成了相对论的射流。相对论射流是强力磁场和低密度材料与BH相结合的结果。射流进一步增强了爆炸能量,超过了10 52 ERG,在冲击之前,它远远超过了重力O V ER侧面。我们的自以为是的超新星模型表明,在超新星祖细胞的高质量端旋转磁化的巨大恒星可能是Hypernova和长伽马射线爆发祖细胞的潜在候选者。
摘要Dune FAR检测器旨在检测由中微子与大型液体氩靶的相互作用的带电产物产生的光子和电子。第一个沙丘远检测器(FD1)的光子检测系统(PDS)由6000个光子检测单元组成,称为X-arapuca。在LAR中释放粒子能量产生的及时光脉冲的检测将补充并增强沙丘壁球时间投影室。它将改善标记的非光束事件,并在低能启用超新星中微子的触发和量热法。X- Arapuca是几个组件的组件。其Photon检测效率(PDE)取决于组件的设计,单个组件的等级和耦合。X-arapuca PDE是PDS敏感性的主要参数之一,进而决定了沙丘对在银河系中检测核心偏曲超新星和核子衰减搜索的敏感性。在这项工作中,我们介绍了FD1 X-Arapuca基线设计的绝对PDE的最终评估,该设计在两个具有独立方法和设置的实验室中测量。在Palomares中报道了初步结果(Jinst 18(02):C02064,https://doi.org/10.1088/1748-0221/18/18/02/C02064,2023)。这些X-Arapuca设备的一百六十个单元已在CERN NETRINO平台的NP04设施中部署了1:20秤
天体物理无碰撞激波是宇宙中最强大的粒子加速器之一。超新星遗迹激波是由超音速等离子体流与星际介质剧烈相互作用产生的,据观测,它可以放大磁场 1 并将电子和质子加速到高度相对论速度 2 – 4 。在完善的扩散激波加速模型 5 中,相对论粒子通过反复的激波穿越而加速。然而,这需要一个单独的机制来预加速粒子以实现激波穿越。这被称为“注入问题”,它与电子尤其相关,并且仍然是激波加速中最重要的难题之一 6 。在大多数天体物理激波中,激波结构的细节无法直接解决,因此很难确定注入机制。这里我们报告了激光驱动等离子体流实验和相关模拟的结果,这些实验和模拟探测了在与年轻超新星遗迹相关的条件下湍流无碰撞激波的形成。我们表明,电子可以通过激波向相对论非热能转变过程中产生的小尺度湍流在一阶费米过程中得到有效加速,从而有助于克服注入问题。我们的观测为激波时的电子注入提供了新的见解,并为在实验室内控制研究宇宙加速器的物理原理开辟了道路。大多数天体物理激波都是无碰撞的,这意味着它们是由等离子体不稳定性形成的,等离子体不稳定性通过磁场放大、等离子体加热和粒子加速来耗散流能 6、7。因此,粒子注入与激波形成机制和激波产生的湍流磁场的性质密切相关。这些过程通常受激波马赫数(激波速度与环境阿尔文或声速之比)控制,但其控制方式尚不十分清楚。长期以来,航天器对地球弓形激波的现场测量已经形成了我们对中等阿尔文马赫数(MA ≈ 3 − 10)下无碰撞激波的理解(参考文献 8)。然而,由于这些奇异遥远激波的局部条件约束不充分,我们对超新星遗迹(SNR)激波相关的甚高马赫数范围(MA ≫ 10)的了解要有限得多,而且大部分都是通过数值模拟获得的 9 – 12。在过去十年中,人们在利用千焦耳级激光器产生超音速超阿尔文等离子体方面做出了巨大努力
2000 年,人们在核静止质量数据中发现了中子排斥力,它是一种被忽视的核能来源,将过去 40 年许多令人费解的太空时代观测结果联系在一起,就像拱门上的拱顶石将拼图的其他部分锁在一起一样。太空、气候和核科学界的成员忽视了中子排斥力,就像他们忽视了之前三个关于地球热源的关键发现一样,这三个发现可能避免了最近有关地球气候的所谓科学预测的丑闻:a.) 太阳在超新星爆炸中诞生了太阳系,然后在坍缩的超新星核心上重新形成(图 1);b.) 在太阳系诞生时,r 过程中产生的过量 136 Xe 是陨石和行星中原始氦的示踪同位素(图 2);c.) 太阳中的质量分馏(图 3)富集了太阳表面的轻元素和每种元素的轻同位素。以上四项发现共同构成了解释以下原因的框架:1.)能量和中微子不断从富含铁的太阳和类似恒星中涌出;2.)像太阳这样一颗普通的恒星形成于前身恒星富含中子的核心;3.)太阳中中子衰变产生的太阳氢在前往富含氢的表面之前,在前往星际空间的途中,通过聚变产生太阳中微子;4.)随着中子排斥力克服引力吸引力,宇宙碎裂并膨胀,产生剧烈的恒星爆炸或稳定的中子发射,并衰变为氢,最终作为废物离开恒星。
Tagrisso - EGFRM NSCLC(不可察觉的STG。III)(LAURA)IMFINZI - NSCLC(不可察觉,STG。III)(Pacific-2)Imfinzi - SCLC - SCLC(限量)(限量)(Adriatic)Imfinzi - Imfinzi - liver cancer cancer cancer cancer cancer cancer cancer cancer cancer(emerald)癌症(Emerald-cancer)IMFARND-IMFAD)(use)(use)(use)(use)(use)(use) - l)(尼罗河) - 子宫内膜癌(1L)(Duo-e)Enhertu - Her2-low乳腺癌(2L)(Destiny-Breast06)Capivasertib - TNBC - TNBC(本地adv./met。)(Capitello-290)(Capitello-290)dato-dxd - dato-dxd - hr+/her2-乳腺癌(hr2-乳腺癌)梗塞(DAPA-MI)Fasenra - EGPA(Mandara)Fasenra - Hes(Natron)AZD3152 - 预防Covid-19(Supernova)
• 杨百翰大学物理学学士学位,2012 年 - 设计用于安全应用的新型中子探测器 - 非常应用的研究,感觉像核工程 • 洛斯阿拉莫斯的本科后研究员,2012-2013 年 - 最初通过 DOE SULI 实习计划 - 生成和测试用于模拟的中子截面数据表 • 加州大学戴维斯分校物理学博士学位,2018 年 - 超新星中微子相互作用的模拟 - 费米实验室 ANNIE 实验的中子背景测量 • 费米实验室博士后,2018-2022 年 - MicroBooNE 实验的模拟和分析工作 • 2022 年晋升为员工,现任物理模拟系组长
大约45亿年前的太阳系形成,我们的太阳系从茂密,旋转的星际气体和尘埃开始了。这种天体舞蹈的触发因素可能是附近的超新星1,其爆炸性冲击波启动了这种原始云的崩溃。随着重力的成立,云凝结并扁平化为一个被称为太阳星云的旋转盘。最终,材料聚集在中心,形成了我们的阳光,而周围的碎屑聚集成原月球磁盘,为形成行星,月亮,小行星和彗星的形成奠定了基础。由物理定律和机会的奇妙塑造的这种创造的巨大景象为人类开始的非凡探索旅程奠定了基础。
CRISPR-Cas12a 已被用作操纵靶基因表达的有力工具。以更精确的时空分辨率和深层组织通透性操纵 CRISPR-Cas12a 活性的可能性将使靶向基因组工程成为可能,并加深我们对复杂细胞行为背后的基因功能的理解。然而,目前可用的可诱导 CRISPR-Cas12a 系统受到扩散、细胞毒性和组织通透性差的限制。在这里,我们开发了一种远红光 (FRL) 诱导的 CRISPR-Cas12a (FICA) 系统,该系统可以在哺乳动物细胞中强有力地诱导基因编辑,以及一种基于蛋白质标记系统 SUperNova (SunTag) 的 FRL 诱导的 CRISPR-dCas12a (FIdCA) 系统,可用于在基于发光二极管的 FRL 下激活基因。此外,我们表明 FIdCA 系统可用于激活小鼠肝脏中的靶基因。这些结果表明,此处开发的系统为以非侵入性和时空方式进行可编程基因组操作提供了强大而高效的平台。
苯达莫司汀和利妥昔单抗用于治疗套细胞淋巴瘤(ECHO)、Datroway(datopotamab deruxtecan)用于治疗 HR+ HER2- 转移性乳腺癌(TROPION-Breast01)以及 Enhertu 用于治疗未接受化疗的 HER2-低和超低转移性乳腺癌(DESTINY-Breast06)。欧盟批准 Tagrisso 用于治疗不可切除的 EGFR m NSCLC(LAURA)以及 Kavigale 用于预防 COVID-19(SUPERNOVA)。日本批准 Imfinzi 用于治疗子宫内膜癌(DUO-E)、Lynparza 加 Imfinzi 用于治疗 pMMR 子宫内膜癌(DUO-E)、Calquence 片剂用于治疗慢性/小淋巴细胞白血病、Datroway 用于治疗 HR+ HER2- 转移性乳腺癌、Fasenra 用于治疗 EGPA(MANDARA)以及 Kavigale 用于预防 COVID-19。中国批准 Lynparza 用于治疗 gBRCAm HER2- 早期乳腺癌(OlympiA)、Orpathys 用于治疗局部晚期或转移性 MET Exon 14 NSCLC(NCT04923945)指引公司根据截至 2024 年的平均外汇汇率,按 CER 发布了 2025 财年总收入和核心每股收益指引。
2014 年 9 月 – 继续:与 Jagdev Singh 教授和 Muthu Priyal 博士合作研究太阳物理学(印度天体物理研究所,印度班加罗尔 Koramangala) 4 月2013 年 – 继续:与副教授Istvan Ballai 教授研究太阳日珥(谢菲尔德大学,数学与统计学院,太阳物理与空间等离子体研究中心,英国) 4 月2011 年 – 4 月2013 年:与 Metin Arık 教授(博斯普鲁斯大学,物理系,土耳其伊斯坦布尔)、Tolga Yarman 教授(奥坎大学,工程与建筑学院,土耳其伊斯坦布尔)等人合作。关于宇宙学。 四月2011 – 2017 年 2 月:与 E. Nihal Ercan 教授合作研究超新星遗迹(博斯普鲁斯大学,物理系,土耳其伊斯坦布尔)。 四月2011 – 2017 年 2 月:与 Dejan Urošević 教授合作。Bojan Arbutina 教授和 Marko Pavlović 博士、Milica Vučetić 博士研究超新星遗迹(贝尔格莱德大学,数学学院,天文系,塞尔维亚贝尔格莱德)。 2009 年 5 月 - 2013 年 5 月:与 Marina Gigolashvili 教授及其副教授合作。Natela Kapanadze 教授研究太阳物理学(格鲁吉亚国家天体物理观测站和 Ilia Chavchavadze 国立大学,格鲁吉亚第比利斯) 4 月2007 年 - 2008 年 2 月:与 Alan Hood 教授合作研究太阳物理学(圣安德鲁斯大学,数学与统计研究所,应用数学研究组,苏格兰圣安德鲁斯,英国)。 2005 年 9 月 – 2006 年 9 月:与 Can Fuat Delale 教授合作,研究使用液化燃料和空化优化的涡轮泵设计(伊斯坦布尔技术大学,航空航天系,土耳其伊斯坦布尔)。 2006 年 5 月 - 2009 年 5 月:爱琴海大学,自然与应用科学研究所,天文与空间科学系,土耳其伊兹密尔。 项目名称:“天体物理冲击波”(指导老师:Esat Rennan Pekünlü 教授) 2002 年 1 月 – 2004 年 1 月:爱琴海大学,自然与应用科学研究所,天文与空间科学系,土耳其伊兹密尔。 项目名称:“由白矮星和红矮星组成的双星”(指导老师:助理。Günay Taş 教授)A WARDS