表1:使用Agilent®SureSelect®XT构建的库生成的测序数据,用于库制备和Agilent®Sureselect®XTDMD KIT,用于从5 dbs样品中隔离的DNA,使用Chemagic™360仪器从5BS样品中分离出基于混合捕获的目标富集。
•尖叫(共识读套件),这是一种新的分子条形码感知的PCR重复工具,用于SUELESELECT XT HS和XT HS2数据,可代替SURESELECT分析的Locatit。•吱吱作响专门解决了Locatit应用程序中的大型内存资源需求,并使用户能够处理与LoCatit相比的内存较少的数据。•尖叫还增加了一种可用于处理嵌合对齐的鲁棒算法,该嵌合对齐由读取段组成,这些片段在同一染色体或不同染色体上彼此之间彼此远远遥不可及。•尖叫报告的基本统计信息具有明确的定义,可以直接追溯到输出BAM文件中的读取。Statistics include: number of processed reads, number of reads passing the filter steps, number of correctly paired reads, number of read pairs flagged as duplicates in the input file, number of read pairs with at least one unmapped mate, number of chimeric read pairs, number of read pairs called as single consensus, number of read pairs called as duplex consensus, number of read pairs called as chimeric consensus, total duplicates确定的,失败的共识过滤器的读对数,读对的数量称为单个共识,在双工模式下质量过滤器失败。
未知的原发性(杯子)的癌症包括一组异质的罕见转移性肿瘤,其主要部位在广泛的临床 - 病情研究后无法识别。 杯子患者通常接受经验化学疗法治疗,并且预后较低。 最近报道,杯赛基因组提出了可能提出靶向疗法的潜在可药物改变。 肿瘤组织的稀少以及难于DNA测试以及缺乏用于靶基因测序的专用面板是进一步的相关局限性。 在这里,我们建议可以使用循环肿瘤细胞(CTC)和循环肿瘤DNA(CTDNA)来识别杯赛患者中可起作用的突变。 血液是从两名杯子患者手中纵向收集的。 用细胞搜索r⃝和deparray tm nxt和parsortix系统分离 ctc,具有免疫表征的特征,用于使用Ampli 1 TM试剂盒进行单细胞基因组表征。 在不同时间点从血浆中纯化的循环无细胞DNA(CCFDNA),使用Sureselect目标富集技术测试了使用杯折线的92基因定制面板的肿瘤突变。 并行,用三种不同的测定法分析了FFPE肿瘤组织:FoundationOne CDX测定法,DeParray libprep和Oncoseek面板以及Sureselect自定义面板。 这些方法识别出相同的突变,当该基因被面板覆盖时,除了APC基因中的插入外。 由Oncoseek和SuneSelect面板检测到,但没有基础。 在一名患者的单个CTC,肿瘤组织和CCFDNA中检测到 FGFR2和CCNE1基因扩增。未知的原发性(杯子)的癌症包括一组异质的罕见转移性肿瘤,其主要部位在广泛的临床 - 病情研究后无法识别。杯子患者通常接受经验化学疗法治疗,并且预后较低。最近报道,杯赛基因组提出了可能提出靶向疗法的潜在可药物改变。肿瘤组织的稀少以及难于DNA测试以及缺乏用于靶基因测序的专用面板是进一步的相关局限性。在这里,我们建议可以使用循环肿瘤细胞(CTC)和循环肿瘤DNA(CTDNA)来识别杯赛患者中可起作用的突变。血液是从两名杯子患者手中纵向收集的。ctc,具有免疫表征的特征,用于使用Ampli 1 TM试剂盒进行单细胞基因组表征。在不同时间点从血浆中纯化的循环无细胞DNA(CCFDNA),使用Sureselect目标富集技术测试了使用杯折线的92基因定制面板的肿瘤突变。并行,用三种不同的测定法分析了FFPE肿瘤组织:FoundationOne CDX测定法,DeParray libprep和Oncoseek面板以及Sureselect自定义面板。这些方法识别出相同的突变,当该基因被面板覆盖时,除了APC基因中的插入外。由Oncoseek和SuneSelect面板检测到,但没有基础。在一名患者的单个CTC,肿瘤组织和CCFDNA中检测到 FGFR2和CCNE1基因扩增。在肿瘤组织和CCFDNA中检测到ARID1A基因(P.R1276 ∗)中的体细胞变体。通过在肿瘤演化期间收集的所有CCFDNA样品中,通过液滴数字PCR验证了变化。CTC呈现出ASPM和SEPT9基因中的复发放大模式以及FANCC的丧失。识别CCFDNA中的92基因自定义面板16个非同义体细胞改变,包括删除(I1485rfs ∗ 19)和体细胞突变(p。
碎裂后,将DNA末端修饰以进行下游目标富集,包括最终修复,A尾和适配器连接。修改步骤后,使用Ampure XP珠纯化扩增的DNA样品。用4200贴抽系统和D1000筛选分析确定纯化DNA的尺寸和浓度(图5)。根据30μl的可用体积计算总DNA量。根据Agilent低输入SURESELECT XT人类所有外显子V5方案¹,库应具有225至275 bp的峰值大小。只有两个样品略低于建议的225 bp。以下部分中的杂交协议需要每个扩增的DNA库的750 ng。两个DNA样品略低于建议的总DNA量(图5)。三个样本没有根据大小或定量来满足QC标准,而是通过工作流程处理的,因为自动库的准备不允许排除单个样本。
背景和目标:神经系统疾病严重影响患者的心理,性格和运动功能,全球患病率上升,尤其是在低收入和中等收入的国家。这项研究旨在评估儿科神经系统疾病中的基因突变,使患者有助于我们对这些疾病的遗传基础的理解。方法:在当前的调查中,所有在2023年至2024年期间被转诊至神经病学部门的母体迹象的患者均已评估。使用Agilent Sureselect Human All Exon Kit V6富含来自患者的DNA样品,然后根据制造商的程序在Illumina HISEQ 4000平台上进行了测序。结果:在当前的横断面研究中,评估了13例母体神经系统疾病患者,包括6名男性(46%)和7个女性(54%)。我们的结果确定了遗传性神经系统疾病,包括乔伯特综合征,Pelizaeus-Merzbacher病和巨型轴突神经病1。我们的数据在PLP1基因的外显子8(NM_001128834.3:c.772a> c; p.met258leu)中鉴定出了一个新的错义突变,并在患有pelizaeus-merzbacher病的患者中具有X连锁的隐性遗传。基因变体,包括外显子20(NM_001382391.1:c.2259_2260delaa; P.Glu7555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555GLYFSTER30)和常染色体隐性膜体固体TMEM67在Exon 8(Exon 8(NM_1537)中> C.725)在乔伯特综合征患者中检测到p.asn242ser)。最后,在患有巨大轴突神经病1的患者中,检测到纯合gan突变(NM_022041.4:c.1177t> c; p.cys393arg)。结论:我们的发现对于理解神经系统疾病的病理生理可能很有用。此外,这项研究还表明了遗传分析在使用神经系统疾病患者中使用治疗策略的重要性。