摘要:背景:II 型黄嘌呤尿症是一种罕见的常染色体嘌呤疾病。这种隐性嘌呤代谢缺陷仍是一种未被充分认识的疾病。方法:我们培育出钼辅因子硫化酶 (Mocos) 基因被靶向破坏的小鼠,以便全面了解嘌呤疾病,并评估这种基因的病理生理功能,该基因存在于大量通路中,并且已知与自闭症有关。结果:缺乏 Mocos 的小鼠在 4 周龄内死于明显的阻塞性肾病肾衰竭,表现为黄嘌呤尿、黄嘌呤沉积、囊性小管扩张、Tamm Horsfall(尿调节蛋白)沉积、中性粒细胞坏死和偶尔出现的肾积水和尿石症。阻塞性肾病与中度间质炎症和纤维化反应、贫血、解毒系统减弱以及嘌呤、氨基酸和磷脂代谢的重大改变有关。相反,表达减少的 MOCOS 蛋白的杂合小鼠是健康的,没有明显的病理。结论:缺乏 Mocos 的小鼠会患上致命的阻塞性肾病,并伴有深刻的代谢变化。研究 MOCOS 功能可能为黄嘌呤尿症和其他需要早期诊断的疾病的潜在发病机制提供重要线索
近年来,人们对塔姆等离子体极化激元 (TPP) 的兴趣日益浓厚,TPP 是位于一维光子晶体 (PhC) 和金属薄膜界面处的光态 [1-10]。通过将液晶引入金属光子晶体结构,可以控制 TPP 的波长和 Q 因子 [11],从而可以通过同时改变电场和温度来控制系统的光学特性。然而,基于这种方法的装置相对较慢,因为液晶的响应时间至少为一毫秒。一种有前途的替代方案是相变材料,例如 VO2 [12-14]、GeSbTe (GST) [15-17] 和 Sb2S3 [18-20]。这些材料的光学特性在特定温度下会急剧变化,从而可以快速调制系统的光学响应。在这种情况下,切换发生在一微秒内,比基于液晶的结构快三个数量级。VO 2 的优势在于 68 C o 的低相变温度。然而,与 GST 一样,VO 2 具有高消光系数,这使其难以用于纳米光子器件。
天然岩石风化有可能将CO 2的大约10 5吉甘作为固体碳酸盐存储。1,2然而,将硅酸盐和CO 2转化为碳酸盐的转化速度很慢,导致每年仅0.13 Gigatons的矿化。1这里,我们演示了一个连续的流量电化学反应器,能够以惰性碳酸盐矿物质的形式捕获和永久存储CO 2。通过电解质产生H +和OH - 在由Ca 2+选择性膜分隔的腔室中,这种“风化电解油”可加速岩石风化的岩石,最多3个数量级。H+将硅酸盐分解为化学室中的反应性Ca 2+物种,而OH - 与CO 2和Ca 2+反应,在相邻的阴极室中形成Caco 3矿物。我们表明,风化电解仪能够衍生自烟气和空气的矿化CO 2,同时避免将CO 2与常规捕获单元隔离开来。
量子系统热力学的研究可以追溯到量子理论的起源,但最近,随着重大进展 [1] 的出现,人们对此的兴趣激增,其中量子信息理论工具的使用起着关键作用 [2 – 8] 。尽管取得了这些进展,但基本问题仍然存在争议。突出的例子包括量子领域的热力学功概念 [9 – 13] ,量子相干性的作用及其作为热力学资源的潜在用途 [14 – 21] 。在此背景下,对热机和量子机器的研究已被证明是有用的,有助于说明量子装置的能力和局限性 [22 – 31] 。对这些装置的分析建立了热机中功波动和耗散之间的权衡 [32,33] ,当对存储设备进行并行集体操作时,充电功率会增加 [34 – 37] 而波动会减少 [38] ,这在热机 [39] 和难以区分的热机 [40] 的许多循环中都具有充电功率优势,而且在考虑关联热机时效率会提高 [41] 。另一方面,研究也表明,纠缠对于功提取并不是必不可少的 [42] ,在给电池充电的高斯运算集合中,存储的功不可没地会出现波动 [43] 。与此同时,Mandalstam 和 Tamm 考虑了量子力学对量子演化速率的限制 [44] 。通过考虑一个状态演变为正交状态所需的最短时间,他们的工作启发了广泛的结果[45-54],这些结果通常包含在进化的量子速度限制这一术语下[55]。
Koenig,J.,Abler,B.,Agartz,I.,Åkerstedt,T。,Andreassen,OA,OA,Anthony,M.,Bär,K.-J.,Bertsch,K.,Brown,R.C.,Brunner,R. MD,Fischer,H.,Flor,H.,Gaebler,M.,Gianaros,P.J.,Giummarra,M.J.,Greening,S.G.,Guendelman,S.,Heathers,J.J. D.,Lamers,F.,Lee,T.-H.,Lekander,M.,Lin,F.,Lotze,M.,Makovac,E. ,B.,Ottaviani,C.,Penninx,Bwjh,Ponzio,A.,Poudel,G.R。,Reinelt,J.,Ren,P.,Sakaki,M。 J.F.,Ubani,B.,Van der Mee,D.J.,Van Velzen,L.S.,Ventura-Bort,C.,Villringer,A.,Watson,D.R.,Wei,L.,Wendt,J.,Westlund Schreiner,M.整个生命周期:横截面合并的大型分析。
量子速度极限 (QSL) 定量估计了量子信息处理的速度 [1]。其历史根源深深植根于量子力学的基础中。因此,QSL 的首次出现是在能量-时间不确定关系的背景下 [2]。QSL 时间设定了两个量子态之间演化时间的下限。受海森堡能量-时间不确定原理的启发,Mandelstam、Tamm (MT) [2] 和 Margolus、Levitin (ML) [3] 推导出量子系统在状态之间演化所需的最短时间界限。这些界限结合起来,为封闭量子系统提供了 QSL 时间的严格界限。它们最初是为连接两个正交态的演化而开发的,随后被推广到任意初始混合态以及非正交态之间的演化 [4]。最近开发了另一种基于状态间几何距离的方法 [5]。近十年来,在开放量子系统 [ 6 ] 的背景下,QSL 的定义得到了发展 [ 7 – 9 ]。QSL 的概念已用于阐明量子信息 [ 10 , 11 ]、开放系统 [ 12 – 15 ]、量子系统控制 [ 16 ] 和量子热力学 [ 17 , 18 ] 的各个方面。此外,利用因果关系和热力学,重要的 Bremermann-Bekenstein 边界 [ 19 , 20 ] 将每比特信息的能量成本与 QSL 时间联系起来。QSL 概念可用于解决的另一个基本问题是量子态的固有稳定性 [ 21 ]。近年来,量子信息思想与相对论量子力学的相互影响尤为卓有成效。相对论量子模拟影响了 Leggett–Garg 不等式 [ 22 , 23 ]、弯曲时空探测 [ 24 ]、几何相位 [ 25 ] 和中微子和中性介子等亚原子粒子相干性 [ 26 ] 的发展。它还引发了对 Unruh 效应的研究 [ 27 ]。此外,在最近的一项研究中 [ 28 ],研究了非局域性对信息传播速率(以蝴蝶速度为特征)的影响,结果表明,随着磁场的增大,非局域性会增大。
朱利安·科尼格 1,2 |比尔吉特·阿布勒 3 |英格丽德·阿加茨 4,5,6 |托比约恩·阿克施泰特 7,8 |奥勒·安德烈亚斯森 4,9 |米娅·安东尼 10 |卡尔·尤尔根·贝尔 11 |卡佳·伯茨 12 |丽贝卡·C·布朗 13 |罗穆亚尔德·布伦纳 14 |卢卡嘉年华 15 |雨果·D·克里奇利 16 |凯瑟琳·R·卡伦 17 | Geus 18 的 Eco JC |十字架的费利伯特 11 |伊莎贝尔·吉奥贝克 19 |马克·D·费格 3 |哈坎·菲舍尔 20 |赫塔弗洛尔 21 |迈克尔·盖布勒 22,23 |彼得·J·吉安罗斯 24 | Melita J. Giummarra 25.26 |史蒂文·G·格林宁 27 |西蒙·根德尔曼 28 |詹姆斯·AJ·希瑟斯 29 |萨宾·J·赫珀茨 12 | Mandy X. 至 30 |塞巴斯蒂安·延奇克 31,32 |迈克尔·凯斯 1.33 |托拜厄斯·考夫曼 4.9 | Bonnie Klimes-Dougan 34 |斯特凡·科尔施 31.35 |玛琳·克劳奇 12 |丹尼斯·库姆拉尔 22.23 | Femke Lamers 30 |李泰浩 36 |马茨·亚历山大 7.8 |凤林10 |马丁洛策 37 |埃琳娜·马科瓦茨 38.39 |马泰奥·曼奇尼 40.41 |福尔克·曼克 12 | Kristoffer NT 价格 20,42 |斯蒂芬·B·马努克 24 |玛拉·马瑟 43 |弗朗西斯·米滕 44 |闵正元 45 |布莱恩·穆勒 17 |薇拉·穆恩奇 13 |弗劳克·尼斯 21.46 |林雅 45 |古斯塔夫·尼尔松内 8,20 |丹妮拉·奥尔多涅斯·阿库纳 31 |贝尔热·奥斯内斯 35.47 |克里斯蒂娜·奥塔维亚尼 39.48 |布伦达 WJH 彭尼克斯 30 |艾莉森·庞齐奥 45 |戈文达·R·普德尔 49 |詹尼斯·雷内尔特 22 |平忍10 |榊道子 50.51 |安迪舒曼 11 |林索伦森 35 |卡尔斯滕·施佩希特 35.52 |乔安娜·施特劳布 13 |桑德拉·塔姆 8,20,53 |米歇尔泰国 17 |朱利安·F·塞耶 54 |本杰明·乌巴尼 55 |丹尼斯·范德米 18 |劳拉·S·范维尔岑 56.57.58 |卡洛斯·文图拉-博特 59 |阿诺·维尔林格 22,23 |大卫·沃森 60 |魏鲁清 61 |朱莉娅·温特 59 |梅琳达·韦斯特伦德·施莱纳 34 |拉尔斯·T·韦斯特莱 4,9,62 |马蒂亚斯·威玛 59.63 |托拜厄斯·温克尔曼 21 |吴国荣 61 |刘贤珠 45 |丹尼尔·S·金塔纳 4.9
Aitchison,J。(1982)。组成数据的统计分析。皇家统计学会杂志:B系列(统计方法论),44(2),139 - 177。Barnea-Goraly,N.,Menon,V.,Eckert,M.,Tamm,L.,Bammer,R.,Karchemskiy,A. 童年和青春期的白质开发:一项横截面扩散张量成像研究。 大脑皮层,15(12),1848 - 1854年。 Bernal-Rusiel,J。L.,Greve,D。N.,Reuter,M.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Diseation neurotimanting Initiative。 (2013)。 具有线性混合效应模型的纵向神经图像数据的统计分析。 neu-roimage,66,249 - 260。 Bernal-Rusiel,J。L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Disision神经影像学计划。 (2013)。 时空线性混合效应模型,用于纵向神经图像数据的质量分析。 Neuroimage,81,358 - 370。 Blakemore,S.-J。和Choudhury,S。(2006)。 青少年大脑的发展:对执行功能和社会认知的影响。 儿童心理学与精神病学杂志,47(3 - 4),296 - 312。 Bradley,R。H.和Corwyn,R。F.(2002)。 社会经济地位和儿童发展。 心理学年度评论,53(1),371 - 399。 Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。 年龄对整个儿童和青春期白色和灰质体积模式的协同作用。 Campbell,F。A.和Ramey,C。T.(1994)。Barnea-Goraly,N.,Menon,V.,Eckert,M.,Tamm,L.,Bammer,R.,Karchemskiy,A.童年和青春期的白质开发:一项横截面扩散张量成像研究。大脑皮层,15(12),1848 - 1854年。Bernal-Rusiel,J。L.,Greve,D。N.,Reuter,M.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Diseation neurotimanting Initiative。(2013)。具有线性混合效应模型的纵向神经图像数据的统计分析。neu-roimage,66,249 - 260。Bernal-Rusiel,J。L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Disision神经影像学计划。 (2013)。 时空线性混合效应模型,用于纵向神经图像数据的质量分析。 Neuroimage,81,358 - 370。 Blakemore,S.-J。和Choudhury,S。(2006)。 青少年大脑的发展:对执行功能和社会认知的影响。 儿童心理学与精神病学杂志,47(3 - 4),296 - 312。 Bradley,R。H.和Corwyn,R。F.(2002)。 社会经济地位和儿童发展。 心理学年度评论,53(1),371 - 399。 Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。 年龄对整个儿童和青春期白色和灰质体积模式的协同作用。 Campbell,F。A.和Ramey,C。T.(1994)。Bernal-Rusiel,J。L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Disision神经影像学计划。(2013)。时空线性混合效应模型,用于纵向神经图像数据的质量分析。Neuroimage,81,358 - 370。Blakemore,S.-J。和Choudhury,S。(2006)。青少年大脑的发展:对执行功能和社会认知的影响。儿童心理学与精神病学杂志,47(3 - 4),296 - 312。Bradley,R。H.和Corwyn,R。F.(2002)。 社会经济地位和儿童发展。 心理学年度评论,53(1),371 - 399。 Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。 年龄对整个儿童和青春期白色和灰质体积模式的协同作用。 Campbell,F。A.和Ramey,C。T.(1994)。Bradley,R。H.和Corwyn,R。F.(2002)。社会经济地位和儿童发展。心理学年度评论,53(1),371 - 399。Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。年龄对整个儿童和青春期白色和灰质体积模式的协同作用。Campbell,F。A.和Ramey,C。T.(1994)。Campbell,F。A.和Ramey,C。T.(1994)。Eneuro,2(4),Eneuro.0003 - Eneu15.2015。Bruchhage,M.M.,Ngo,G.-C.,Schneider,N.,D'Sa,V。,&Deoni,S。C.(2020)。功能连通性与婴儿和早期儿童认知发展的相关性。大脑结构和功能,225(2),669 - 681。早期干预对智力和学术成就的影响:对低收入家庭的儿童的后续研究。儿童发展,65(2),684 - 698。Chakraborty,S。和Zhang,X。(2021)。在高维度中用于距离和基于内核的指标的新框架。电子统计杂志,15(2),5455 - 5522。Chen,E。Z.和Li,H。(2016)。分析纵向微生物组组成数据的两部分混合效应模型。生物信息学,32(17),2611 - 2617。Chen,Y.,Dubey,P.,Müller,H.-G.,Bruchhage,M.,Wang,J.-L。,&Deoni,S。(2021)。 对早期神经发育中的稀疏纵向数据进行建模。 Neuroimage,237,118079。 dai,X.,Hadjipantelis,P.,Wang,J.-L.,Deoni,S.C。L.,&Müller,H.-G。 (2019)。 白质成熟与整个幼儿的认知发展之间的纵向关联。 人脑图,40(14),4130 - 4145。 Dai,X.,Lin,Z。,&Müller,H.-G。 (2021)。 建模Riemannian歧管上的稀疏纵向数据。 Biometrics,77(4),1328 - 1341。Chen,Y.,Dubey,P.,Müller,H.-G.,Bruchhage,M.,Wang,J.-L。,&Deoni,S。(2021)。对早期神经发育中的稀疏纵向数据进行建模。Neuroimage,237,118079。dai,X.,Hadjipantelis,P.,Wang,J.-L.,Deoni,S.C。L.,&Müller,H.-G。 (2019)。白质成熟与整个幼儿的认知发展之间的纵向关联。人脑图,40(14),4130 - 4145。Dai,X.,Lin,Z。,&Müller,H.-G。 (2021)。 建模Riemannian歧管上的稀疏纵向数据。 Biometrics,77(4),1328 - 1341。Dai,X.,Lin,Z。,&Müller,H.-G。 (2021)。建模Riemannian歧管上的稀疏纵向数据。Biometrics,77(4),1328 - 1341。
* 加州西部法学院副教授;加州大学圣地亚哥分校客座副教授;印第安纳大学(布卢明顿)奥斯特罗姆访问学者;内布拉斯加大学(林肯)访问学者:内布拉斯加州治理与技术中心;乔治梅森大学安东宁斯卡利亚法学院托马斯爱迪生创新研究员和列奥纳多达芬奇研究员;加州大学洛杉矶分校法学院访问学者;美国注册专利律师;西北大学普利兹克法学院法学博士;西北大学凯洛格管理学院工商管理硕士;休斯顿大学法学院法学硕士;斯坦福大学商学院研究生创业证书;斯坦福大学工程学院机械工程硕士;德克萨斯大学奥斯汀分校科克雷尔工程学院机械工程学士。非常感谢 Michael Risch、Ted Sichelman、Brenda Simon、Thomas D. Barton、Robert A. Bohrer、Shawn Miller、Lisa Ramsey、Anjanette Raymond、Daniel R. Cahoy、Sonia Katyal、Tejas Narechania、Jonathan Barnett、Eric Claeys、John Duffy、Sean O'Connor、Ashish Bharadwaj、Loletta Dardin、Charles Delmotte、H. Tomás Gómez-Arostegui、Taorui Guan、Devlin Hartline、Christa Laser、Daryl Lim、Kevin Madigan、Talha Syed、James Stern、Seth C. Oranburg、Agnieszka McPeak、Gregory Day、Nicole Iannarone、Emily Loza de Siles、Eric C. Chaffee、Robert F. Kravetz、Ashley London、Aman Gebru、Elizabeth I. Winston、A. Michael Froomkin、Mason Marks、Larry DiMatteo、Robert W. Emerson、Robert E. Thomas、Colleen M. Baker、Lawrence Trautman、George Cameron、David Orozco、Thomas Freeman、Christopher Guzelian、Daniel Herron、Michelle Romero、Tyler Smith、Brian Haney、Jihwang Yeo、Sikander Khan、Erica Pascal、Ryan Hsu、Kevin R. Tamm 和 Daniel R. Peterson。感谢以下论坛展示本文并感谢参与者的真知灼见:佛罗里达大学沃灵顿商学院 2020 年 Huber Hurst 研究研讨会、杜肯大学法学院初级 #FutureLaw 研讨会 4.0、印第安纳大学(布卢明顿)奥斯特罗姆研讨会系列座谈会、乔治华盛顿大学法学院初级知识产权学者协会 (JIPSA)、迈阿密大学法学院 2019 年 We Robot 大会、堪萨斯大学法学院 PatCon 9(年度专利会议)以及圣地亚哥大学法学院第 9 届年度专利法会议。感谢商业法律研究学院 (ALSB) 跨学科部门在 2020 年 ALSB 年会上将本文评为首届“最佳论文奖”,并感谢 ALSB 成员的真知灼见。
* 加州西部法学院副教授;加州大学圣地亚哥分校客座副教授;印第安纳大学(布卢明顿)奥斯特罗姆访问学者;内布拉斯加大学(林肯)访问学者:内布拉斯加州治理与技术中心;乔治梅森大学安东宁斯卡利亚法学院托马斯爱迪生创新研究员和列奥纳多达芬奇研究员;加州大学洛杉矶分校法学院访问学者;美国注册专利律师;西北大学普利兹克法学院法学博士;西北大学凯洛格管理学院工商管理硕士;休斯顿大学法学院法学硕士;斯坦福大学商学院研究生创业证书;斯坦福大学工程学院机械工程硕士;德克萨斯大学奥斯汀分校科克雷尔工程学院机械工程学士。非常感谢 Michael Risch、Ted Sichelman、Brenda Simon、Thomas D. Barton、Robert A. Bohrer、Shawn Miller、Lisa Ramsey、Anjanette Raymond、Daniel R. Cahoy、Sonia Katyal、Tejas Narechania、Jonathan Barnett、Eric Claeys、John Duffy、Sean O'Connor、Ashish Bharadwaj、Loletta Dardin、Charles Delmotte、H. Tomás Gómez-Arostegui、Taorui Guan、Devlin Hartline、Christa Laser、Daryl Lim、Kevin Madigan、Talha Syed、James Stern、Seth C. Oranburg、Agnieszka McPeak、Gregory Day、Nicole Iannarone、Emily Loza de Siles、Eric C. Chaffee、Robert F. Kravetz、Ashley London、Aman Gebru、Elizabeth I. Winston、A. Michael Froomkin、Mason Marks、Larry DiMatteo、Robert W. Emerson、Robert E. Thomas、Colleen M. Baker、Lawrence Trautman、George Cameron、David Orozco、Thomas Freeman、Christopher Guzelian、Daniel Herron、Michelle Romero、Tyler Smith、Brian Haney、Jihwang Yeo、Sikander Khan、Erica Pascal、Ryan Hsu、Kevin R. Tamm 和 Daniel R. Peterson。感谢以下论坛展示本文并感谢参与者的真知灼见:佛罗里达大学沃灵顿商学院 2020 年 Huber Hurst 研究研讨会、杜肯大学法学院初级 #FutureLaw 研讨会 4.0、印第安纳大学(布卢明顿)奥斯特罗姆研讨会系列座谈会、乔治华盛顿大学法学院初级知识产权学者协会 (JIPSA)、迈阿密大学法学院 2019 年 We Robot 大会、堪萨斯大学法学院 PatCon 9(年度专利会议)以及圣地亚哥大学法学院第 9 届年度专利法会议。感谢商业法律研究学院 (ALSB) 跨学科部门在 2020 年 ALSB 年会上将本文评为首届“最佳论文奖”,并感谢 ALSB 成员的真知灼见。