• STES — 利用物质的热容量来储存热能。• 典型的例子是家用热水箱(加热水 = 储存热能)• 根据温度范围,可以是其他材料(即岩石、金属)• 温差为 25 °C 时水的能量密度 = 105 J/g(29 kWh/m 3 )• STES 优势• 发达的技术(即传统 DHWT)• 具有成本效益 — 如果是水,则储能介质的成本较低• 可以调整功率输出 — 热交换器设计的产物• 可用于大规模长期储存(大型分层水箱)• 储能效率可能很高 — 系统热损失的功能• STES 劣势• 能量密度相对较低(水的通常为 ~29 kWh/m 3 )• 家庭规模的短期储能 — 绝缘功能。
盐水合物中的热阻和传质阻力是设计过程中面临的最大挑战。盐水合物颗粒和耦合介质之间的高热阻和潜在接触不良会导致盐未被利用(非活性储存)。因此,求解二维热阻和传质方程可实现更有效的设计,例如矩形通道和圆形翅片管几何形状,便于制造和定制。
光电器件的透明导电电极 (TCE) 设计需要在高导电性和透射率之间进行权衡,从而限制了其效率。本文展示了迄今为止最好的 TCE,其新颖的 TCE 制造方法可以有效缓解这种权衡:集成金属的单片高对比度光栅 (metalMHCG)。metalMHCG 比其他 TCE 具有更高的电导率,同时具有透射和抗反射特性。本文重点介绍红外光谱 TCE,这对于传感、热成像和汽车应用至关重要。然而,由于自由载流子吸收率升高,它们对可见光谱的要求比 TCE 高得多。它展示了创纪录的 75% 非偏振光绝对透射率,相对于普通 GaAs 基板的透射率达到创纪录的 108%。它实现了更大的偏振光绝对透射率,达到 92% 或 133% 的相对透射率。尽管透射率创下了历史新高,但金属 MHCG 的薄层电阻却是有史以来最好的,比任何其他 TCE 都低几倍,范围从 0.5 到 1 𝛀 Sq − 1。
到 2050 年实现净零排放目标需要大规模部署可再生能源和碳捕获技术。钙循环 (CaL) 是一种有前途的热化学储能 (TCES) 系统,可提高聚光太阳能发电厂 (CSP) 的可调度性。文献中发现的 CaL TCES 配置侧重于 CSP 电厂热电效率的稳态分析。在这项工作中,考虑到太阳能资源和电价的季节性和每日变化,对 CSP 电厂的 CaL TCES 系统的运行进行了经济优化。定义的方法确定了 CaL TCES 的运行性能,从而最大限度地提高 CSP 的经济收入以及一年中不同季节/时期代表日的能源生产和存储的每日概况。结果表明,可以获得良好的经济效益并运行 CSP + 存储以实现每日收入最大化。获得的结果对于系统的最终设计和定义存储设备所需的尺寸也很有用。
无转移的石墨烯透明导电电极(TCE)是有机太阳能电池(OSC)的二锡氧化物(ITO)的有前途替代品。在本工作中,对沉积温度和H 2流速如何影响RF血浆增强化学蒸气沉积的石墨烯Pro的生长,结构,光学和电气性能如何使用可持续来源进行了全面研究。倒置的几何形状OSC具有P3HT:PCBM光活性层在不同条件下开发的无传输石墨烯TCES上制造。此外,还研究了银纳米线(AGNW)与不同石墨烯膜的耦合,用于用于OSC的混合石墨烯-Agnws TCE。基于在低或零H 2流程下制备的石墨烯TCE的设备比H 2的高流量表现出更好的性能。同样,由于垂直定向的石墨烯纳米片的生长高度增加,因此在高温(> 700℃,石英上)预先削减的石墨烯TCES导致了设备的性能恶化,从而大大降低了膜的传播和表面粗糙度。目前的工作提供了对可持续碳源玻璃上RF-PECVD石墨烯的生长机理的扎实理解。更重要的是,对OSC的可持续性,环保,成本和时间效率的生产进行了优化,这为通往无ITO的无光电子学铺平了道路。
与聚光太阳能发电厂相关的钙循环热化学储能技术似乎是一种很有前途的技术,因为它有可能增加储存时间和储存材料的能量密度。到目前为止,研究工作主要集中在固定运行模式下不同发电周期的 TCES 的整体效率:白天或夜晚。然而,TCES 永远不会在静止情况下运行,而是会经历不同的运行点,以适应太阳能可用性和发电周期的能源需求。目的是分析在 TCES 系统中涉及的热交换器网络、储罐和反应堆的设计中,在能量存储和释放模式下定义运行点的变量的影响。概念工厂中的设备已建模,考虑了质量平衡中的可变存储/排放分数。结果显示了合适的捕获效率,量化了存储的功率,并定义了运行系统所需的热交换器的大小和性能。推导出每个热交换器的行为及其与发电厂热集成的相关性。其创新之处在于对储罐充电/放电比例的不同组合可能出现的情况的分析。
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。
加利福尼亚州圣地亚哥(2024 年 10 月 30 日)——Redoxblox 在 A 轮融资中额外筹集了 3000 万美元,由 Prelude Ventures 领投,Imperative Ventures 和 New System Ventures 参投,现有投资者 Breakthrough Energy Ventures 和 Khosla Ventures 也参与其中。这使得 A 轮融资总额达到 4070 万美元。Redoxblox 正在开创一种新型低成本热化学储能系统 (TCES),旨在加速工业脱碳并满足电网的长期储能需求。该公司的 TCES 装置以化学和高温热能形式储存能量,允许持续或按需放电以用于工业过程或发电。该系统可以在电价较低或可再生能源发电过剩期间快速充电。
摘要:Perovskites是热化学能量储能应用(TCE)的众所周知的氧化物,因为它们由于非石化计量学而显示出巨大的自发O 2释放潜力。过渡金属的钙钛矿由于其不同的氧化态而是TCE的特别有希望的候选者。重要的是要测试用于TCES应用的钙钛矿的热行为;但是,可以在热分析中使用的样品量受到限制。使用氧化还原循环流经床测试可以提供更现实的方法,因为可以使用大量样品来测试钙钛矿的循环行为。在这项研究中,通过热分析和流动性床测试研究了氧化还原循环下Mn-或Cu取代的SRFEO 3(SRFE 0.5 m 0.5 O 3; M:MN或CU)的氧释放/消耗行为。还通过差异扫描量热法(DSC)计算了钙钛矿的反应焓。cu在SRFEO 3中的取代增加了循环稳定性和氧气释放/摄取能力的显着性能。MN取代也提高了环状稳定性;但是,MN作为FE的替代品的存在并不能改善钙钛矿的氧气释放/摄取性能。
摘要:太阳能是一种无限的可再生能源,其开发对于支持用可再生能源替代化石燃料至关重要。太阳能可通过聚光太阳能发电 (CSP) 与热化学能储存 (TCES) 相结合的方式利用,通过可逆固气反应转换和储存聚光太阳能,从而实现全天候运行和连续生产。目前,人们正在研究高效、经济且具有长期耐久性和性能稳定性的高温 TCES 系统。事实上,人们追求的是材料在多次充放电循环中容量损失减少或没有损失的循环稳定性。目前研究的主要热化学系统包括金属氧化物氧化还原对 (MO x / MO x − 1 )、非化学计量钙钛矿 (ABO 3 / ABO 3 − δ )、碱土金属碳酸盐和氢氧化物 (MCO 3 / MO、M(OH) 2 / MO,其中 M = Ca、Sr、Ba)。金属氧化物/钙钛矿可以在开环中以空气作为传热流体运行,而碳酸盐和氢氧化物通常需要闭环操作并储存流体(H 2 O 或 CO 2 )。天然成分的替代来源也引起了人们的兴趣,例如丰富且低成本的矿石矿物或回收废物。例如,正在研究石灰石和白云石以提供最有前途的系统之一,CaCO 3 / CaO。基于氢氧化物的系统也在取得进展,尽管最近的大多数研究都集中在 Ca(OH) 2 / CaO 上。混合金属氧化物和钙钛矿也是广泛开发和有吸引力的材料,这要归功于它们的工作温度和储能容量的可能调整。材料的形状及其稳定性对于使材料适应其在反应器(例如填料床和流化床反应器)中的集成以及确保商业使用和开发的顺利过渡至关重要。回顾了自 2016 年以来 TCES 系统的最新进展,并特别强调了它们在太阳能过程中的集成以实现连续运行。