摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
摘要。脑电图 (EEG) 分析任务对于脑机接口 (BCI) 的发展至关重要。然而,要达到开发稳健、有用的 BCI 的目标,很大程度上取决于 BCI 理解神经动态的速度和准确性。为了实现这一目标,本文详细介绍了预训练视觉变换器 (ViT) 与时间卷积网络 (TCNet) 的集成,以提高 EEG 回归的精度。这种方法的核心在于利用 ViT 的顺序数据处理优势以及 TCNet 的卓越特征提取能力,显着提高 EEG 分析的准确性。此外,我们分析了如何构建最佳补丁以供注意力机制分析的重要性,以平衡速度和准确性。我们的结果表明,回归准确度显著提高,EEGEyeNet 的绝对位置任务的均方根误差 (RMSE) 从 55.4 降至 51.8,优于现有的最先进模型。在不牺牲性能的情况下,我们将该模型的速度提高了一个数量级(最高可提高 4.32 倍)。这一突破不仅为 EEG 回归分析树立了新的标杆,还为未来将 Transformer 架构与针对不同 EEG 数据集的专门特征提取方法相结合的研究开辟了新途径。