摘要肿瘤及其代谢和免疫微环境之间的交叉通信的阻塞被认为是治疗癌症的有前途解决方案。肿瘤已被确定为一种无法愈合的特殊类型的“伤口”。最近的研究表明,CD4 +助手T细胞中缺乏转化生长因子β(TGFB)信号通路会诱导肿瘤内血管组织的重塑,例如肿瘤过度生长引起的受损组织中的愈合“伤口”,从而阻止了肿瘤细胞接受所需的Micmroyemoroyemronecronectionrementrogements nimeroneynroctiond。TGFB阻滞,从而促进组织愈合受损,导致饥饿导致肿瘤细胞死亡,最终获得有效的抗癌免疫疗法免疫反应。在这里,我们对免疫系统和营养供应之间的TGFB介导的串扰发表评论,突出了针对环境免疫代谢相互作用的癌症免疫治疗策略。因此,针对TGFB的癌症环境免疫疗法可能成为癌症患者最有前途的治疗策略之一。
据报道,摘要卢彭酮具有许多药物价值,并产生阳性抗糖尿病作用。但是,在1型糖尿病大鼠中尚未阐明预防和治疗1型糖尿病的机制。这项研究研究了卢彭酮对通过网络药理学和糖尿病大鼠预防和治疗1型糖尿病的作用的影响和机理。测量了血糖,糖基化的血红蛋白(HBA1C),胰岛素和胰岛素和炎性因子的胰岛素和1型糖尿病的胰腺中的炎症因子,并在用卢彭酮治疗后观察到组织病理学的变化。在糖尿病大鼠上构建了“成分 - 靶向疾病”的药理学网络。基因功能富集,基因和基因组途径分析的京都百科全书和分子对接。结果表明,卢彭酮可以降低空腹血糖和HBA1C水平,增加胰岛素含量和白介素(IL)-4,IL -10,并降低IL -6,转化胰腺中的生长因子β和肿瘤坏死因子α水平。此外,确定了十个目标,50个与1型糖尿病密切相关的信号途径和通过网络药理学筛选了炎症,包括胰岛素抵抗,II型糖尿病,I型糖尿病,胰岛素信号途径,有丝裂蛋白信号途径,有丝分裂激活的蛋白激活蛋白激酶(MAPK)信号途径(MAPK)信号途径(TUMOR NECRESIS途径)(TNF)。因此,卢彭酮有可能作为治疗1型糖尿病的新药开发。潜在靶标和卢彭酮的对接亲和力在-3.3和-9.8之间,其中CASPASE-3(CASP 3),Cyclin依赖性激酶4(CDK 4),Kappab激酶β(IKBKB)的抑制剂,使生长因子beta-1(TGFB 1)(TGFB 1)和TNF变化高粘结。
结果:NLRP6-脱发的小鼠表现出CD103 + B细胞的膨胀,并受到1型糖尿病的保护。此外,与NLRP6-S-S-S-S-S-Sufient CD103 + B细胞相比,NLRP6-脱离的CD103 + B细胞表达调节标记,分泌更高的IL-10和TGFB1细胞因子和抑制的糖尿病性T细胞增殖。NLRP6-SUF的微阵列分析和-DE的CD103 + B细胞鉴定出79个明显不同的基因,包括受脂多糖调节(LPS),维列维甲可菌素,IL-10和TGFB的基因,并在刺激上均可刺激。此外,来自NLRP6偏剂小鼠的微生物群在定殖的NLRP6-舒张的无细菌小鼠中诱导CD103 + B细胞;但是,CD103 + B细胞的长期维持需要在宿主中没有NLRP6,或者继续暴露于NLRP6偏离小鼠中的微生物群。
WDR5/MLL1-H3K4ME3表观遗传轴通常在肿瘤细胞和肿瘤浸润的免疫细胞中都被激活,以驱动肿瘤微环境中的各种细胞反应,并在造血癌中进行了广泛研究,但在肿瘤细胞和免疫细胞中,在肿瘤细胞中的相应功能仍然是肿瘤生长的肿瘤细胞。我们在这里报告说,与正常胰腺相比,WDR5在人胰腺肿瘤组织中表现出更高的表达水平。此外,WDR5表达与患者对人类结肠癌和黑色素瘤的化学疗法或免疫疗法的反应负相关。然而,在人类癌细胞中的WDR5表达与HLA水平呈正相关,并且在胰腺癌细胞的HLA-A,HLA-B和HLA-C基因的启动子区域观察到H3K4ME3富集。使用小鼠肿瘤细胞系和体内肿瘤模型,我们确定WDR5缺乏症或抑制作用在胰腺肿瘤细胞中的体外和体内抑制MHC I表达。从机械上讲,我们确定WDR5缺乏抑制MHC I(H2K1)启动子区域的H3K4ME3沉积以抑制MHC I(H2KB)转录。另一方面,WDR5耗竭导致胰腺微环境中的免疫检查点和免疫抑制细胞因子(包括TGFB和IL6)的下调。我们的数据确定WDR5不仅调节肿瘤细胞免疫原性以抑制肿瘤的生长,而且还激活了免疫抑制途径以促进肿瘤免疫逃避。在基于WDR5的表观遗传癌症的免疫疗法中应考虑选择性激活WDR5-MHC I途径和/或选择性抑制WDR5免疫检查点和WDR5-Cytokine途径。
背景:青光眼是不可逆转的失明的主要原因。硬化细胞外基质(ECM)的重塑在青光眼发展中起重要作用。这项研究的目的是通过生物信息学分析来确定巩膜在青光眼中进行ECM重塑的关键基因和途径,并探索青光眼管理的潜在治疗剂。方法:使用文本挖掘工具PubMed2Ensembl检测到与青光眼,巩膜和ECM重塑相关的基因,并使用Genecodis程序分配了基因和基因组(KEGG)途径的京都百科全书。通过弦构建蛋白质 - 蛋白质相互作用(PPI)网络,并在Cytoscape中进行可视化,使用分子复合物检测(MCODE)插件进行模块分析,并使用注释,可视化和集成发现(David(David))平台对基因模块进行GO和KEGG分析。选择了聚集在显着模块中的基因作为核心基因,并使用Cluego和Cluepedia可视化核心基因的功能和途径。最后,使用药物 - 基因相互作用数据库来探索核心基因的药物与果仁相互作用,以找到青光眼的药物候选物。结果:我们通过文本挖掘确定了125个与“青光眼”,“ sclera”和“ ECM重塑”的基因。基因功能富集分析产生了30个富集的GO术语和20个相关的KEGG途径。构建了一个带有249个边缘的60个节点的PPI网络,并使用MCODE获得了三个基因模块。我们选择了13个聚集在模块1中的基因作为主要与ECM降解以及细胞增殖和分裂相关的核心候选基因。发现HIF-1信号通路,FOXO信号通路,PI3K-AKT信号通路和TGFB信号通路被发现富集。我们发现,13个选定基因中的11个可以由26种现有药物瞄准。结论:结果表明,VEGFA,TGFB1,TGFB2,TGFB3,IGF2,IGF1,EGF,EGF,FN1,KNG1,TIMP1,SERPINE1,THBS1,THBS1和VWF是涉及巩膜ECM重塑的潜在关键基因。此外,将26种药物确定为青光眼治疗和管理的潜在治疗剂。