2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
Dichalcogenides (TMDCs) Ahmad Nizamuddin bin Muhammad Mustafa Sami Ramadan 1 , Peter K. Petrov 1 , Huanyu Zhou 1 , Giuseppe Mallia 1 , Nicholas Harrison 1 , Yasir Noori 2 , Shibin Thomas 2 , Victoria Greenacre 2 , Gill Reid 2 , Philip N Bartlett 2 , Kees de Groot 2 , Norbert Klein 1 1 Imperial College London, London, United Kingdom 2 University of Southampton, Southampton, United Kingdom a.bin-muhammad-mustafa21@imperial.ac.uk Two-dimensional (2D) heterostructures composed of graphene and Transition Metal Dichalcogenides (TMDCs) have garnered significant attention owing to their unique physics and potential applications in diverse设备。TMDC,包括MOS 2,WS 2,Mose 2和WSE 2,由于其带隙范围和强烈的轻度 - 互动,因此对电子和光电应用受到了电子和光电应用的青睐。TMDC和石墨烯中都没有悬空键,允许在异质结构中无缝集成,与单物质构型相比,为出色的设备铺平了道路。在使用机械去角质堆叠单个层的同时,化学蒸气沉积(CVD),电沉积和原子层沉积的最新进展为大面积的生长和可伸缩性提供了希望[1] [2]。但是,需要在生长后或生长后的高温暴露,可能会改变石墨烯的特性。我们研究了硫退火对石墨烯对TMDCS生长的电和结构特性的影响。在各种条件下,在温度范围为300-800°C的温度下进行系统退火。参考我们的发现表明,真空退火在石墨烯中诱导蚀刻,这会因硫种类的存在而加剧,从而导致电性能显着降解(图1)。值得注意的是,用自组装单层涂层的石墨烯会减轻这种降解,从而使高质量TMDC在石墨烯上沉积。MOS 2和WS 2对石墨烯的电沉积,然后进行硫退火后处理证明了该策略的功效。这项研究阐明了硫退火在影响石墨烯质量中的关键作用,并为TMDC在石墨烯上的生长铺平了道路,用于高性能电子应用。
二维(2D)材料具有非凡的特性,使它们在下一代电子,光学,能量和传感器相关的应用中具有吸引力的纳米材料。要实现2D材料(例如过渡金属二核苷)(TMDC)的技术潜力,需要高度可控和可扩展的途径。尽管已经为TMDC开发了多种合成材料,但生产大规模的高质量晶体层仍然具有挑战性。与自上而下的方法相比,合成2D材料的自下而上的方法具有更大的应用范围。化学蒸气沉积(CVD)和原子层沉积(ALD)途径表现出巨大的希望,因为它们能够构成大面积,产生出色的均匀性,无与伦比的保融性和原子尺度的可控性,除了行业兼容。对于TMDC的CVD和ALD,前体对形成的层的性质起着关键作用。在本演讲中,将突出显示代表性TMDC(MOS 2和WS 2)的金属有机前体,沉积条件和物质特性之间的相互作用。将讨论与经典CVD过程相关的高温的措施。对不同底物上层成核和生长的研究揭示了不同的生长模式和成核密度。新的前体组合为TMDC在中等至低温下的大面积结晶生长的直接生长铺平了道路,这对于广泛的应用是一个重要的优势。
一种非常有前途的原子薄半体导管的材料类是过渡金属二分法元素(TMDC)。该材料类在MX 2(M¼TransitionsMetal;x¼s,se,te)层中具有较强的共价键结晶,但相对较弱,但相对较弱,可以切断大量晶体的单层。由单层制造的设备可以描述为仅接口的设备,并且已经显示了TMDC作为气体传感器的应用。[14]为了能够在高性能的FET应用中使用TMDC,过度出现的主要挑战是这些单层的缺陷控制。[15]两种主要类型的缺陷是晶界,金属或金属葡萄染色体空位。既会降低材料的电性能,但是空缺也为使单层官能化的额外途径开辟了一条额外的途径,可以在传感器应用中进行优势。[16 - 20]最近,已经显示了使用去离子化(DI)水的基于MOS 2的FET装置的运行;但是,使用MOS 2多层。[21,22]这些结果构成了在
量子发射器已成为基本科学和新兴技术的重要工具。近年来,12 eld的重点已转移到探索和识别新的量子系统,该系统由原子上薄的二维材料的新兴库启用。在这篇综述中,我们强调了2D系统中量子发射器工程技术的当前状态,重点是过渡金属二烷核化合物(TMDCS)和六角形氮化物。我们首先要回顾TMDC的进度,重点是发射机工程,调整其光谱特性以及观察层间激子的能力。然后,我们讨论HBN中的发射器,并专注于发射器的起源,工程和新兴现象 - 跨越超分辨率成像和光学自旋读数。我们通过讨论在具有等离子和介电光子腔的2D宿主中整合发射器的实践进步,并由量子光 - 形式相互作用支撑。我们结束了实践芯片量子光子应用的途径,并在这项研究中强调了挑战和机遇。
二维材料由于其超薄的厚度和超高的表面积与体积比而拥有奇特的物理和化学特性。单层过渡金属二硫化物 (TMDCs) 半导体表现出可调的光致发光 (PL),可以通过应变和掺杂等外部扰动来操纵。例如,单层 MoS 2 拥有应变可调的能带结构,表现出可用于光伏 [1] 的宽带光吸收和可用于量子信息 [2] 应用的有前途的单光子发射。单层 MoS 2 还表现出由化学 [3] 或静电掺杂 [4] 引起的接近 1 的 PL 量子产率,从而可以开发高效的发光二极管 [5] 或激光器 [6]。为了探测外部扰动,拉曼光谱是一种强大且非破坏性的工具,可以定量确定应变和掺杂对 MoS 2 的影响。尽管应变和掺杂对
纳米技术的进展目前受GHz范围内的电子开关速度严重限制。提出了各种想法,即使用可以实现Petahertz转换的单周光学脉冲。Rybka等。 证明了等离子纳米电路中电子电流的连贯的光波控制[1]。 这是Keathley等人扩展的。 从金纳米antennas [2]到光发射。 Hommelhoff和Ref中的同事报告了光场驱动的真实和纯载体。 [3],他还证明了电子相关效应在超快光发射中的重要作用[4]。 subfemtsecond灯驱动的电荷动力学在参考文献中进行了。 [5]和[6]。 进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。 他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。 当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。 特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。Rybka等。证明了等离子纳米电路中电子电流的连贯的光波控制[1]。这是Keathley等人扩展的。从金纳米antennas [2]到光发射。 Hommelhoff和Ref中的同事报告了光场驱动的真实和纯载体。 [3],他还证明了电子相关效应在超快光发射中的重要作用[4]。 subfemtsecond灯驱动的电荷动力学在参考文献中进行了。 [5]和[6]。 进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。 他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。 当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。 特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。从金纳米antennas [2]到光发射。光场驱动的真实和纯载体。[3],他还证明了电子相关效应在超快光发射中的重要作用[4]。subfemtsecond灯驱动的电荷动力学在参考文献中进行了。[5]和[6]。进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。
•经典相关材料:TMS,氧化物/TMO•有机导体(1d,2d)•繁重的费米斯•cuprates•对TMOS的兴趣:SR 2 Ruo 4,Rnio 3,Rnio 3,Manganites,Manganites,Iridates,Iridates和许多其他许多…… LAO/STO • Fe-based superconductors à `Hund metals' (New route to strong correlations) SC in pressurized H 2 S 155GPa à other hydrides • SC in twisted bilayer graphene • Twisted TMDCs • à Interplay of correlations and topology/Flat bands • à Strong coupling to light, excitonic physics • SC in infinite-layer RNiO 2 • Low density金属(sto),kagome金属
层状过渡金属二硫属化物 (TMDC) 具有各种电子、结构和传输现象,是电子器件中最有希望的应用材料 [1, 2]。在众多新状态中,这些化合物中的电荷密度波 (CDW) 相尤其受到关注,因为它在相图中与超导相邻 [3, 4]。就电子结构而言,CDW 相通常与费米面嵌套相关,费米面特定位置的间隙打开,由 CDW 波矢连接 [5–7]。作为响应,原子从其原来的位置移动,形成可通过扫描隧道电子显微镜 (STM) 实验可视化的超结构 [8–10]。在所有 TMDC 中,1T-VSe 2 是一个特殊的例子,因为它在块体中具有长波长 3D CDW 相。它经历与 4 a × 4 a × 3 不相称的 CDW。 18c 在 T ∗ = 110 K 附近出现周期性晶格畸变,随后在 80 K 附近第二次跃迁至相应的 CDW 态 [9–11]。另一方面,电子结构上的 CDW 相得到了角分辨光电子能谱 (ARPES) 的异常研究支持。例如,据报道在