在过去的几年中,基于Algan/GAN异质结构的设备因其物质特性而受到了极大的关注,包括宽带,高电子迁移率和二维电子气体(2DEG)的高密度,使其成为高功率和高频应用的最佳选择之一。然而,在散装或表面上存在几个不同性质的陷阱,阻碍了这些设备的性能,其行为的不良变化并限制了其可靠性[1]。捕获gan设备中的效果是显着的,这是两个有趣的原因。首先,它们可以通过捕获电子来耗尽2DEG,从而减少电流。第二,它们的缓慢性质会导致频率分散,从而限制了它们的动态性。最近,已经使用了多种技术来研究捕获机制的行为[2-4],这是由阻抗测量组成的最流行方法之一,允许查找电荷陷阱的激活能(E A)。晶体管中的表面和散装陷阱通常与经典的小信号等效电路并行或串联为RC电路建模,从而捕获设备输出阻抗的频率分散体。为了确定陷阱的参数,必须以广泛的温度(首先进行)进行AC表征,因为陷阱机制的影响在降低温度时会增加,其次,因为人们可以观察到电荷释放的热激活。
利用公众支持从大量数据集中提取信息已成为准确标记相机陷阱 (CT) 图像中野生动物数据的一种流行方法。然而,对志愿者工作不断增长的需求延长了数据收集与我们得出生态推断或执行数据驱动的保护行动的能力之间的时间间隔。人工智能 (AI) 方法目前在物种检测(即图像中是否包含动物)和标记常见物种方面非常有效;然而,它对图像中很少捕捉到的物种和视觉上彼此高度相似的物种表现不佳。为了充分利用人类和人工智能分类方法的最佳优势,我们开发了一个集成的 CT 数据管道,其中人工智能提供标记图像的初始传递,但由人类监督和验证(即“人在环”方法)。为了评估分类准确度的提高,我们将人工智能和 HITL 协议生成的物种标签的精度与野生动物专家注释的“黄金标准”(GS)数据集进行比较。人工智能方法的准确性取决于物种,并与训练图像的数量呈正相关。 HITL 的共同努力使 73% 的数据集的错误率低于 10%,并降低了另外 23% 的错误率。对于两个外观相似的物种,人类输入的错误率高于人工智能。虽然与仅使用人工智能相比,将人类纳入循环会增加分类时间,但准确率的提高表明这种方法对于大批量 CT 调查非常有价值。
我们提出了一种非常可行的技术,无需任何实验开销,即可快速冷却彭宁阱中大型二维离子晶体的平面内自由度。通过模拟,我们证明了我们的方法能够在不到 10 毫秒的时间内将平面内模式冷却到约 1 mK 的温度。 我们的技术依赖于冷却不良的平面内运动和有效冷却的平面外运动的近共振耦合,并且无需引入额外的电位即可实现。我们的方法实现的快速冷却与典型的操作条件形成对比,在典型的操作条件下,我们对激光冷却动力学的模拟表明离子晶体的平面内运动在几百毫秒的时间尺度上非常缓慢地冷却,这一速度可能比实验加热速度慢。我们的工作为平面运动的亚多普勒激光冷却以及在彭宁阱中使用二维晶体进行更稳健、更通用的量子模拟和量子传感实验奠定了基础。
NETosis 是一种特殊的细胞死亡机制,通过形成中性粒细胞胞外陷阱 (NET) 实现。1 NET 可导致多种疾病的发病,包括类风湿性关节炎和 COVID-19。1,2 开发直接靶向 NET 或抑制上游激活和信号传导事件的抑制剂提供了一种有吸引力的治疗方法。1-3 该领域正在进行的商业活动包括同类首创抗组蛋白治疗药物 CIT-013 (Citryll) 的 1 期试验,以及 DDP-1 抑制剂 Brensocatib (Insmed Inc.),正在进行非囊性纤维化支气管扩张的 3 期试验。新型 NETosis 抑制剂的开发将依赖于强大的高通量筛选试验来推进药物发现。为此,开发了使用原代人中性粒细胞和分化 HL-60 (dHL60) 细胞的 NETosis 筛选试验。
量子信息处理需要能够相干且精确地控制和测量的量子比特 [1]。被电磁场捕获并保存在真空室中的原子离子线性链可以满足这些要求,并且已经成为一个令人兴奋且有前途的量子计算平台 [2-4]。量子比特可以在超精细基态或塞曼基态中编码,其中离子通过 Mølmer-Sørensen 方案受到自旋相关力 [5]。然后,虚拟声子在库仑力的作用下介导离子之间的自旋-自旋相互作用 [6]。这样,离子阱链成为自旋-自旋相互作用系统的量子模拟的天然平台 [7]。大量的研究兴趣集中在为量子模拟设计特定的哈密顿量 [8-12]。尤其独特的是 XY 自旋模型,它们的长程相互作用以 1 / r α 衰减,其中 α 是一个可调参数。该模型存在模型空间外的相干泄漏,特别是对于较小的 α 。在这里,我们展示了如何完全缓解这种相干误差,并提供了两个应用:最佳空间量子搜索和 O ( √
摘要 — 表面电极离子阱因其对捕获离子的卓越可控性而在实际量子计算中具有极高的前景。借助先进的微加工技术,硅已被开发为离子阱衬底,用于精细的表面电极设计以及单片电光元件集成。然而,硅的高射频损耗阻碍了大规模实施的可能性。在这项工作中,我们展示了一种硅通孔 (TSV) 集成离子阱,由于消除了表面上的引线键合焊盘和外形尺寸的小型化,该离子阱具有较低的射频损耗。我们还制造了两种类型的传统引线键合 (WB) 阱,它们有或没有接地屏蔽层。就片上 S 参数、封装后谐振和由此产生的功率损耗而言,对不同离子阱的射频性能进行了测试和比较。结果表明,与 WB 阱相比,TSV 阱具有较低的 S21(50 MHz 时约为 0.2 dB)、较高的 Q 因子(约为 22)和较低的功率损耗(0.26 W)。此外,还采用 3D 有限元建模对不同阱的电场进行可视化和 RF 损耗分析。从建模中提取的结果与测量结果显示出良好的一致性。除了各种 RF 测试外,还介绍了不同离子阱的设计、制造和离子捕获操作。这项工作提供了对离子捕获装置 RF 损耗的见解,并为减少 RF 损耗提供了一种新的解决方案。
摘要 早在 2012 年,Blom 等人就报道 (Nature Materials 2012, 11, 882) 半导体聚合物中的一般电子陷阱密度约为 3 × 10 17 cm −3 ,中心能量为低于真空度 ≈3.6 eV。有人提出,陷阱具有外部来源,水-氧复合物 [2(H 2 O)-O 2 ] 是可能的候选者,因为它具有电子亲和力。然而,缺乏进一步的证据,通用电子陷阱的起源仍然难以捉摸。本文在聚合物二极管中研究了可逆电子陷阱的温度依赖性,该陷阱在偏置应力下在数分钟内缓慢发展到 2 × 10 17 cm −3 的密度,中心能量为低于真空度 3.6 eV。陷阱形成动力学遵循 3 阶动力学,与陷阱通过三个扩散前体粒子相遇形成的理论一致。通用陷阱和缓慢演化的陷阱之间的一致性表明,半导体聚合物中的一般电子陷阱是通过氧和水分子之间的三重相遇过程形成的,该过程形成了建议的 [2(H 2 O)-O 2 ] 复合物作为陷阱起源。
直到2000年之后,撒哈拉以南非洲的经济增长有限。虽然该地区的几个国家已经达到了中等收入的地位,并且是全球增长最快的经济体之一,但其他许多国家已经停滞不前,风险降至低收入水平。本文旨在使用单位根模型来检查35个撒哈拉以南国家的GDP经济融合。第二,我们隔离了人均GDP良好的融合,并审查了每个国家,以将共同的成功元素作为赞比亚的课程。在35个采样的国家中,只有六个略微汇合到美利坚合众国。在六个国家的深入审查中,三个关键的成功要素作为赞比亚的建议。其中包括1)审慎管理矿产end赋,例如铜和钻石。矿产财富的收益应保留在艰苦的几年中,以使经济多样化。2)强烈关注农业机械化和对小农户的支持,以确保完全的农业转型。虽然预计农业的份额随着经济的增长而减少,但只有在二级部门充分发展后才能发生这种界限。3)政府支出的财政纪律,再加上自由市场的生态系统,是维持非洲增长的关键。
获得了标记标准标准和NIST SRM等离子体代谢物的数据依赖性MS 2,同时获得了标记标准标准的目标MS 2。使用离子陷阱的目标实验中,发现MS 2以足够的强度产生诊断片段,并在整个峰上进行了足够的扫描点进行定量。初步数据证明了利用离子陷阱的靶向分析物上苯丙氨酸的LLOD和LLOQ低于10 femtomoles。高分辨率MS 2由化合物发现者分析,以从包括MZCloud在内的多个来源生成注释。对已识别化合物的完整扫描在峰上具有足够的扫描以进行相对定量。
跨导测量栅极对漏极电流的控制能力,它与晶体管的增益有关。研究发现,G m 性能随栅极电压而变化,在低栅极偏压下观察到 G m 的峰值,因为存在图 5a 所示的陷阱(正陷阱和负陷阱),而由于迁移率下降,G m 在高栅极电压下下降。G d 随栅极电压的变化