在全球人口不断增长和气候变化的情况下,在维持可持续的农业实践的同时,保持较高的农作物产量一直是一个不断的挑战。Precision农学是一种现代农业方法,已成为解决这一挑战的解决方案。该抽象探讨了精确农学及其最大化作物产量的技术的概念,同时最大程度地减少了资源浪费。精确的农学以数据驱动的决策,利用技术,数据分析和高级管理策略为中心,以改变传统的农业实践。它始于全面的土壤分析,以了解土壤成分,养分水平和其他影响农作物生长的因素。地理信息系统(GIS)和全球定位系统(GPS)随后被用来创建详细的现场图,帮助农民根据特定地点的条件做出精确的决策。精确农学的关键组成部分之一是可变率应用(VRA)。通过根据土壤分析,产量图和作物健康监测的数据来调整诸如肥料和农药等投入的施用率,农民可以优化资源利用率。这种有针对性的方法不仅可以最大化收益率,还可以降低环境影响并降低生产成本。除了资源管理外,精确的农学还强调了有效的种植实践,包括最佳的种植深度,种子间距和作物选择。疾病和害虫管理策略都纳入了综合害虫管理(IPM),以最大程度地减少农药使用并保护作物健康。 简介疾病和害虫管理策略都纳入了综合害虫管理(IPM),以最大程度地减少农药使用并保护作物健康。简介灌溉是精确农学的另一个关键方面。通过使用有关土壤水分,天气预报和植物需求的实时数据,农民可以微调灌溉实践,减少水浪费,同时确保作物健康。Precision农学的未来有望有望更大的进步,包括人工智能和机器学习的整合,提高了数据分析和决策建议的速度和准确性。可持续实践有望发挥重要作用,这为农业的生态友好和资源有效的未来做出了重要作用。总而言之,Precision农学是解决全球粮食生产,气候韧性和资源效率的全球需求的强大工具。通过采用数据驱动的决策和采用高级技术,精密农学为农业提供了更可持续和生产力的未来。关键字:GIS,GPS,Precision农业,精确农学,作物产量优化,数据驱动的决策,土壤分析,可变费率应用,有效的种植习惯,疾病和有害生物管理,灌溉优化,灌溉优化引用:Wasay A,Ahmed Z,Abid Z,Abid Au,Sarwar A和Sarwar A和Ali A,20224。通过精确的农艺技术优化作物产量。趋势生物技术植物科学2(1):25-35。 https://doi.org/10.62460/tbps/2024.014 1。
从5G到6G网络的过渡代表了通信技术的开创性步骤,该步骤有望重新定义世界的联系,互动和运作。6G将提供极大的性能飞跃,数据速率预计将达到前所未有的每秒1吨(TBP),而延迟降至低至0.1微秒。这种进化有望实现以前难以想象的应用程序和服务,将6G定位为下一波数字转换浪潮中的核心技术。6G最令人兴奋的方面之一是它为需要超低延迟和高带宽的高级应用提供了潜力。自动驾驶汽车将受益于近乎实用的数据传输,使它们可以相互交流,并实时与基础设施进行通信,以提高安全性和效率。这对于减少事故和实现智能运输系统的发展至关重要。此外,诸如全息沟通,增强现实(AR)和虚拟现实(VR)之类的沉浸式体验将达到6G的新高度,提供完全互动的三维体验,这些体验像生活一样,仅受到想象的限制。6G也将允许Terahertz(Thz(Thz)允许通过大量的型号供应大量的数据,并增强了大量的数据。密度。THZ频谱可以在短距离内更快地传输数据,这使其非常适合在茂密的城市地区和智能城市中的应用,在这些应用程序中,大量设备需要同时进行高速连接。因此,6G设置为支持物联网(IoT)的持续扩展,并实时连接数十亿个智能设备。这个庞大的网络将实现一系列新的服务和应用程序,从智能城市的智能照明和能源管理到行业的预测维护。此外,6G管理巨大的设备密度和数据量的能力将增强关键服务,例如实时远程医疗,远程诊断甚至机器人手术。其接近零的潜伏期和超高可靠性(高达99.9999%),6G将允许医疗专业人员从远处执行复杂的程序,从而扩大获得优质医疗保健的机会。这对于医疗专业知识和资源有限的农村和偏远地区尤其具有变革性。超出速度和连接性,可持续性将是6G网络的主要特征。这些下一代网络旨在通过采用先进的能源收获技术和改进的网络管理来优化能源效率。通过智能资源分配,6G网络将最大程度地减少跨基础架构和连接设备的能源消耗。关注可持续性的关注与全球努力减少环境影响并建立绿色技术的努力保持一致,以确保数字连通性的增长并不能以牺牲地球为代价。安全性和隐私增强功能也将是6G的关键组成部分,因为大量的连接设备和生成的数据深度需要强大的保护。总而言之,6G代表不仅代表更快,更广泛的连接性。高级加密,分散的网络体系结构和AI驱动的安全措施将形成安全6G环境的骨干,从而解决了增加连接性的漏洞。这是一个超连接,聪明和可持续的数字未来的基础。通过在医疗保健,运输,工业等方面启用革命性应用,6G将在塑造社会运作,提供便利和创新时发挥关键作用,而
1。介绍解决对短期范围内域内和纳特纳德式容量的需求不断增长,具有较高敏感性和波长施用多路复用(WDM)的连贯收发器被视为增加总体容量并达到总体能力的关键候选者[1,2]。O波段传输的距离和接收灵敏度受到更高的光纤衰减因子的限制,而WDM系统会引入更多的被动损失,例如多路复用器。使用O波段中的光放大器允许更长的触手可及,并使高通道计数配置可部署[3]。但是,在O波段中,尚不清楚放大技术的选择,尤其是在连贯的传输领域内。半导体光放大器(SOA)已经被探索以进行强度调制和直接检测(IM/DD)系统,作为在接收器端提供足够信号功率的一种方式[4]。然而,已知大量SOA表现出高噪声图并产生非线性失真,这阻碍了它们用于光学信号扩增的使用。此外,SOA通常会诱发信号chirp,从而使连贯的信号更加降低。量子点(QD)技术的进步允许与量子孔(QW)和散装对应物相比,QD SOA会产生较低的失真和chirp [5]。这很重要,因为SOA是O波段数据中心间接连接空间的良好候选者,因为它们的占地面积较小,功耗较小,而较小的功耗比掺杂的纤维纤维放大器(PDFA),并且最重要的是,它们可以集成到光子集成电路中(PIC)。2。尽管如此,不同SOA技术提供的总体性能和非线性增益动力学尚未进行测试和比较,并在IM/DD和相干调制的情况下,以建立下一代图片所需的高波特速率与纤维放大器进行比较。这项经验研究对于简化了一定的系统拓扑(调制格式,波特率等)的放大器选择很重要。因此,在这一贡献中,我们首先考虑了QD,QW和BOLK SOA的比较,即考虑两个关键的表现参数,这些参数会影响波形振幅和相位,即增加恢复时间(GRT)和线宽增强因子(亨利或α -Factor)。接下来,重要的是,我们通过研究依赖于这种放大器和PDFA的IM/DD和相干系统的BER性能,将分析扩展到O波段的高速系统领域。我们在第3节中通过实验证明,QD-SOA以高波德速率和IM/DD的PDFA和其他SOA的表现高,并且能够扩大多-TBPS WDM系统。SOA在本节中的表征,我们比较了具有相似属性的散装和QW-Soas(Inphenix ip- sad1301)以及来自Innolume的QD-SOA中的一些相关特征。主要结果总结在图中1 a)。它们与文献得出的“典型”值相辅相成。公平的比较需要从饱和度中运行所有SOA。否则,较低的饱和功率SOA将遭受添加的非线性失真。图相应的饱和功率如图1 b)描绘了该参数,该参数是(CW)输入功率在SOA中的函数。1 a)(第一列)。QD-SOA表现出较高的输入饱和功率(3dB增益降低),P坐在。所有的肥皂都在其最大增益点偏见。测量α因子对于IM/DD系统中CHIRP诱导的脉冲扩大以及相干系统中不需要的相位调制诱导的星座变形很重要。 SOA的此参数以简单的方式将活动层折射率的变化与载体密度变化响应材料增益的变化有关。 因此,对于传输应用,α因子的低值是理想的。 图的第3列 1 a)显示了所有SOA的测得的α因子。 除了散装SOA(显示出比预测的α因子低的SOA)之外,它们落在预期范围内,如第2列(摘自文献)所示。 QD-SOA展示测量α因子对于IM/DD系统中CHIRP诱导的脉冲扩大以及相干系统中不需要的相位调制诱导的星座变形很重要。SOA的此参数以简单的方式将活动层折射率的变化与载体密度变化响应材料增益的变化有关。因此,对于传输应用,α因子的低值是理想的。图1 a)显示了所有SOA的测得的α因子。除了散装SOA(显示出比预测的α因子低的SOA)之外,它们落在预期范围内,如第2列(摘自文献)所示。QD-SOA展示
国际超导工业技术中心(主席:Araki Hiroshi)的超导工程研究所(教师Tanaka Shoji)开发了一个4x4超导数据包开关,该开关在40GHz工作,大约100倍,大约100倍。开关容量为5mm平方芯片上的每秒160千兆位(Gbps),已经与商业可用的高端路由器的开关相同,该路由器的尺寸为几十厘米。通过扩大将来的规模,可以实际使用大容量数据包开关,从而破坏半导体的技术极限。 这种超高速度超导路由器开关开发的技术背景在以下几点中。换句话说,如果信息和通信跟踪以年龄的2到3倍的速度增加,到2010年,核心路由器的容量将需要数十TBP,这是当前容量的数百倍。但是,该发展是由于在半导体中将路由器能力提高到该水平的困难而激发了发展。此外,超导开关被认为最有可能使用称为SFQ的电路,该电路的原理与半导体不同,并且近年来制造和电路设计技术的快速进步一直是技术开发背后的主要推动力。 该SFQ电路是一种通过操作单个单元量子SFQ的每个单元(英文名称,单通量量子)来处理信息的设备技术,尽管它比半导体更快地操作,但它会消耗低功率,从而使高度积分较少。开关电路这次开发了4,200个基于尼伯的超导式约瑟夫森连接,并且具有4x4(4个输入和4个输出)开关函数,可以大规模扩展。 该报告的结果于2004年4月19日在IEEE高性能转换和路由(HPSR)的研讨会上宣布,这是在美国亚利桑那州凤凰城举行的国际路由器相关会议。 (Hidaka Mutsuo,SRL/ISTEC设备研发部低温设备开发办公室主任,编辑办公室Tanaka Yasuzo)