自我:技术发展和不断增长的需求导致了材料科学领域的重大创新。非织造的表面材料是纺织工业的重要子分支,是重要的材料,具有广泛的应用,近年来在生物医学领域引起了极大的关注。非织造表面是灵活的,光明和经济材料,而不是传统的编织或编织技术产生的。这些材料具有低成本,轻,灵活和快速生产的优点,这要归功于生产过程中的纤维不规则和各种结合方法。高耐用性,低重量和高空气渗透性特征,例如非织造表面,伤口覆盖,药物传播,卫生产品和生物信号遵循 - 诸如提供有效溶液之类的区域。非织造表面材料的广泛使用区域需要正确表征物理,机械和化学特性。这种表征在确定材料的性能,质量和应用潜力中起着关键作用。非织造表面的表征方法包括评估材料的结构,强度,渗透性,吸收能力和其他重要特征的过程。在本文中,它重点关注非织造表面材料的生物医学区域,并对这些材料的特征方法进行了全面的检查。基于文献中目前的研究,详细讨论了用于确定非织造表面特征的各种特征方法。关键字:表面,生物医学应用,表征
这个问题越来越受到关注,尤其是在运动服,运动服和工作服领域。[1,2]水分管理纺织品是指具有单向运输特性的服装,使水分可以从佩戴者的身体中运输出来。[3,4]人们倾向于在许多条件下大量出汗或发汗,例如,在潮湿而热门的环境中,或者处于强化运动状态。在这种情况下,出汗遵循人体,效率低下的水分传输不仅会影响热生理舒适性,而且会导致不适和可能的皮肤状况。[5,6]因此,必须具有出色的方向性水分运输能力的材料来保持佩戴者的固定瓷砖和表演。[7,8]在这方面,水分芯技术已被用作有前途的方法之一。水分芯的效率取决于几个参数,这些参数是结构性设计,底物的表面作用,孔的微结构和毛细管力(FCF)。[9]正在采用各种技术,包括由表面改性的羟化型超细纤维组成的单个分层纺织品。[10]这种纺织品通常是从聚酯和聚丙烯中脱离的,这些纺纱表现出高水分释放和低水分携带。这款单层微纤维纺织品需要轻微的精加工,以增强其水分传输能力。Janus纺织品是指每侧具有不对称特性的纺织品。[11,12]芯吸技术的另一种应用方法是利用卫星微纤维,Coolmax Fiber旨在改善所得纺织品的水分传输性能。[13]它显示出相当大的水分传输能力,但是,这种单层纺织品无法保留液体并阻止其沿反向方向越过纺织品,也就是说,这是双向液体液体水分传输纺织品。他们吸引了越来越多的注意力,他们对水分管理的潜在收益。由于每一层的独立剪裁和设计,这种纺织品具有更有效的液体水分传输性能。在我们的工作背景下,可以通过两种主要策略来制造具有方向性水分传输能力的Janus材料:1)通过将它们涂在布上[14-18]和2)形成疏水性 - 氢化性
作者:JC Antunes · 2022 年 · 被引用 21 次 — 如今,防护服的开发至关重要,因为无论对于军队还是平民,有害生物威胁的程度都在增加……
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年1月2日发布。 https://doi.org/10.1101/2022.12.12.31.522227 doi:biorxiv Preprint
超级电容器纤维具有充电时间短、循环寿命长和功率密度高的特点,有望为基于柔性织物的电子产品供电。然而,到目前为止,只生产出了短长度的功能性纤维超级电容器。这项研究的主要目标是引入一种超级电容器纤维,以解决功能可扩展性、灵活性、包层不渗透性和长度性能等剩余挑战。这是通过自上而下的制造方法实现的,其中宏观预制件被热拉成全功能储能纤维。预制件由五个部分组成:热可逆多孔电极和电解质凝胶;导电聚合物和铜微线集电器;以及封装密封包层。该工艺生产出 100 米长的连续功能性超级电容器纤维,比之前报道的任何纤维都要长几个数量级。除了柔韧性(曲率半径~1 毫米)、防潮性(100 次洗涤循环)和强度(68 MPa)之外,这些纤维在 3.0 V 时的能量密度为 306 µWh/cm 2,在 1.6 V 时经过 13,000 次循环后电容保持率约为 100%。为了展示这种纤维的实用性,它首次采用机器编织并用作 3D 打印长丝,开辟了一个新的应用领域。
投资回报率:2-3 年(小产能)和 2-4 年(大产能) 原材料的可用性 所有原材料都易于获得,价格合理 产品/设备认证状态(监管机构/用户机构) 材料特性根据标准进行测试 独特卖点 • 椰壳纤维髓中的木质素磺酸钠是一种进口替代品 • 木质素磺酸盐用途广泛, • 在建筑中 — 作为混凝土外加剂中的增塑剂 • 油井钻探中的添加剂, • 动物饲料粘合剂 • 表面活性剂, • 胶体悬浮液中的稳定剂 • 椰壳纤维髓中的木质素磺酸钠可能是一种具有成本效益的进口替代品,并且可以为椰壳纤维增值。 实验室技术转让费用为 a) 微型 b) 小型企业 c) 中型公司 2.5% 安装费
简而言之,该方法使用一组代表性软表面纺织品的1厘米直径盘或1厘米2个正方形(载体)。每个载体接收10 µL的微生物接种物(具有三部分的土壤负荷),沉积在每个载体的中心。允许接种物干燥,然后暴露于50 µL抗菌治疗中;对照载体接受等效的无害液体(例如磷酸盐缓冲盐水)。允许曝光时间经过;然后将液体中和添加到小瓶中,以停止抗菌作用。每个带有载体的小瓶是涡旋,串行稀释的,并且含量被过滤以恢复可行的微生物。基于未经处理的对照和处理过的载体的平均log 10密度值之间的差,计算了可行细菌中平均log 10减少(LR)。LR值用作产品有效性的度量。
摘要:在物联网和人工智能的时代,高度的轻巧和灵活的自充电系统具有同步能量收集和能量存储,这是高度满足的,可以为无效,分布式和低功率可耐磨性电子机构提供稳定,可持续性和自主的电源。然而,缺乏关于基于摩擦电纳米生成器(TENG)的最新作品的综合审查和挑战性的讨论,这些基于基于的自动充电功率纺织品,这很有可能成为未来的能源自主能力来源。在此,从纺织结构设计的方面全面总结了自动充电纺织品杂交纤维/织物型tengs和纤维/织物形状电池/超级电容器的杂交。基于当前的研究状况,最终还讨论了关键的瓶颈和更明亮的自我充电功率纺织品的前景。希望自我充电电源纺织品的最新研究的摘要和研究可以帮助相关的研究人员准确掌握研究的进度,专注于关键的科学和技术问题,并促进进一步的研究和实际应用程序。
医院环境是通过手部与硬表面和纺织品的直接和间接接触传播医疗保健相关感染的重要介质。在本研究中,使用微生物培养方法和 16S rDNA 测序对瑞典两个护理病房中频繁接触部位(包括纺织品和硬表面)的细菌进行了鉴定。在一项横断面研究中,鉴定了 176 个频繁接触的硬表面和纺织品,并使用微生物培养进一步分析以量化总需氧菌、金黄色葡萄球菌、艰难梭菌和肠杆菌。使用 16S rDNA 测序进一步分析了 26 个样本的细菌种群结构。研究显示,与硬表面(每小时 2.2 次)相比,手部与纺织品直接接触的频率更高(每小时 36 次)。硬表面符合需氧菌 5 CFU/cm 2 和链球菌 1 CFU/cm 2 的推荐标准。金黄色葡萄球菌(分别为53%和35%)的发生率高于纺织品(分别为19%和30%)(P=0.0488)。纺织品上的细菌属数量高于硬表面。纺织品中最具代表性的菌属是葡萄球菌(30.4%)和棒状杆菌(10.9%),而硬表面中最具代表性的菌属是链球菌(13.3%)。很大一部分纺织品不符合清洁度标准,再加上与硬表面相比细菌多样性更高,这些都表明纺织品是细菌的储存器和细菌传播的潜在风险媒介。然而,由于研究中发现的大多数细菌属于正常菌群,因此不能得出纺织品和硬表面是医院相关感染来源的结论。
简而言之,该方法使用一组代表性软表面纺织品的1厘米直径盘或1厘米2个正方形(载体)。每个载体接收10 µL的微生物接种物(具有三部分的土壤负荷),沉积在每个载体的中心。允许接种物干燥,然后暴露于50 µL抗菌治疗中;对照载体获得等效量的无害流体(例如增长培养基)。允许曝光时间经过;然后将液体中和添加到小瓶中,以停止抗菌作用。每个带有载体的小瓶是涡旋,连续稀释的,并将其镀到细胞上,以恢复可行的病毒颗粒。存在可行的病毒颗粒的存在为适用于测试系统(例如,细胞病变效应(CPE),直接荧光抗体(DFA)染色(DFA)染色,血凝等染色等)。基于未经处理的对照和处理过的载体的平均log 10密度值之间的差,计算生存病毒颗粒中的平均log 10减少(LR)。LR值用作产品有效性的度量。