许多研究人员都研究了这些特殊矩阵,涉及递归序列,例如斐波那契,卢卡斯,佩尔,平衡数字等。在过去的几十年中,但研究人员仍然非常感兴趣。例如,Akbulak和Bozkurt [1]获得了Toeplitz矩阵的规范,并带有斐波那契和卢卡斯号的条目。然后S。Shen [19]和A.daäSdemir[6]分别将这项研究扩展到K-fibonacci和K-lucas数量,以及Pell和Pell-lucas数量。另外,Solak和Bahsi [20]获得了涉及斐波那契和卢卡斯数的汉克尔矩阵的光谱规范的规范和边界。这项研究已扩展到其他数字序列,可以看到[3,9,10,15,21,22,24]。这些类型的特殊矩阵在各个领域都有广泛的应用,例如图像处理,振动分析,加密等。[14,16,23]。
摘要 — 由于维数较高,噪声多通道脑电图时间序列数据的协方差矩阵难以估计。在基于事件相关电位和线性判别分析 (LDA) 进行分类的脑机接口 (BCI) 中,解决这个问题的最新方法是通过收缩正则化。我们提出了一个新想法来解决这个问题,即对 LDA 的协方差矩阵实施块 Toeplitz 结构,这实现了每个通道在短时间窗口中信号平稳的假设。在 13 种事件相关电位 BCI 协议下收集的 213 名受试者的数据上,与收缩正则化的 LDA(最多 6 个 AUC 点)和黎曼分类方法(最多 2 个 AUC 点)相比,由此产生的“ToeplitzLDA”显著提高了二元分类性能。这意味着应用程序级别的性能得到了极大改善,例如在无监督视觉拼写器应用程序中记录的数据,其中 25 个受试者的拼写错误平均可以减少 81%。除了 LDA 训练的内存和时间复杂度较低之外,ToeplitzLDA 被证明即使在 20 倍的时间维度扩大后也几乎保持不变,这减少了对特征提取专家知识的需求。