我们研究了 transmon 量子比特与经典引力场的相互作用。利用引力红移和 Aharonov-Bohm 相位的一般现象,我们表明纠缠量子态以通用速率失相。引力相移用量子计算噪声通道来表示。我们给出了一种基于改进的相位估计算法的测量协议,该算法与相位漂移呈线性关系,最适合测量从引力通道获取的小相位。此外,我们提出基于量子比特的平台作为精密重力仪和机械应变计的量子传感器,作为该现象实用性的一个例子。我们估计测量局部重力加速度的灵敏度为 δg/g ∼ 10 − 7 。本文表明经典引力对量子计算硬件有着不小的影响,并说明了量子计算硬件如何用于计算以外的目的。虽然我们关注超导量子比特,但我们指出引力相位效应对所有量子平台都具有普遍性。
摘要 量子计算机是一种逻辑处理器,它利用量子的固有特性(即纠缠和叠加)来执行计算。理论研究表明,通过利用这种量子行为,某些问题的解决速度可以比传统方法快得多。为了在物理上实现这一点,过去二十年来,世界各地在创建可操作的量子计算机方面取得了一致进展。可以使用任意数量的系统来创建量子计算机,就像可以使用从穿孔卡到半导体的任何材料来制造传统计算机一样。我们将探索一种领先的实现方式,即超导电路,追溯从 20 世纪 90 年代末开始的最先进设计的发展。特别是,我们将讨论 Transmon,这是一种非常成功的设计,目前正在应用于更大规模的架构。这是一个发展迅速、受到广泛关注的领域,我完全相信目前的发展速度将在可预见的未来继续下去。
近年来,超导量子处理器取得了重大进展。目前,包含几十个量子位的小型处理器已被证明 1 。处理器的运行保真度在不断提高 2–5 。我们有理由相信,量子算法很快就能在多个领域超越经典算法 6 。然而,要实现容错量子计算,还需要解决许多问题。基于超导电路的量子处理器的一个主要限制是量子位 (qubit) 的相干时间相对较短。通过提高量子位的固有相干性,可以减少操作容错逻辑量子位的开销 7 。因此,当在量子处理器中加入新组件或材料时,最重要的是不要降低物理量子位的相干性。传统上,超导量子电路是在未掺杂的硅衬底或蓝宝石衬底上制作的,以保持高相干性。人们对通过加入新材料和结构 8910 来扩展超导量子电路的功能性有着浓厚的兴趣。对于许多量子应用来说,一种备受关注的材料是 Ge 或 Ge 与硅的混合(硅锗 SiGe)。Ge 和 SiGe 已被用于从约瑟夫森场效应晶体管 11 到自旋量子比特 12 的各种应用中,最近有提议认为 SiGe 可以为片上光到微波转导提供途径 13 。在这里,我们研究了在 Si 衬底上制作的转导量子比特 14 的相干特性,其中已添加由额外层外延硅 (epi-Si) 覆盖的 SiGe 异质结构。将 SiGe 技术与高相干性超导量子电路相结合的可能性可能对量子设备和应用的开发具有重要意义。我们试图回答的主要问题是,是否可以结合 Si/SiGe/Si 堆栈的生长来制造高相干性超导量子电路。为了验证这一假设,我们制造了具有四种不同电容器垫设计的 transmon 设备,如图 1a 所示,
基本量子门(尤其是双量子比特门)的速度最终决定了量子电路运行速度的极限。在这项工作中,我们通过实验证明了常用的双量子比特门的速度几乎是两个超导传输量子比特之间的物理相互作用强度所允许的最快速度。我们通过实施使用机器学习启发的最优控制方法设计的实验门来实现这一量子速度极限。重要的是,我们的方法仅要求单量子比特驱动强度略大于相互作用强度,即可实现接近其分析速度极限的任意双量子比特门,并且保真度高。因此,该方法适用于各种平台,包括具有可比单量子比特和双量子比特门速度的平台,或具有始终在线相互作用的平台。我们期望我们的方法能够为非原生双量子比特门提供显著的加速,而这通常是通过一长串单量子比特和原生双量子比特门来实现的。
3 设计可编程玻色子量子模拟器 22 3.1 玻色子概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 48 3.3.2.3 最佳控制脉冲 . ...
我们确定了三维超导射频(SRF)谐振器中的量子反应性的主要来源,以及由氧化尼伯群组成的二维透射量值:五级系统(TLS)损失的氯托氧化物中的氧气空位:氧气空位。通过探测顺序真空烘焙处理对大量NB NB SRF共振器RF性能以及使用飞行飞机二级离子质谱法(TOF-SIMS)的代表性NB样品的氧化物结构的影响,我们发现Cavity质量因子Q 0的非单调性进化与NB相互构图相关联。我们将这种作用定位在氧化物本身中,并通过通过湿氧化来揭示了缓解加重的TLS损失的缓解氧化氧化物,从而呈现了基础NB中扩散的间质氧的微不足道作用。我们假设五氧化五氧化物中的此类空缺是磁杂质的,并且是TLS驱动的RF损失的来源。
摘要 — 稳定的量子计算要求噪声结果即使在存在噪声波动的情况下也能保持有界。然而,非平稳噪声过程会导致量子设备不同特性的漂移,从而极大地影响电路结果。在这里,我们讨论噪声的时间和空间变化如何将设备可靠性与量子计算稳定性联系起来。首先,我们的方法使用 Hellinger 距离量化在不同时间和地点收集的特征指标的统计分布差异。然后,我们验证一个分析界限,将该距离直接与计算期望值的稳定性联系起来。我们的演示使用华盛顿超导 transmon 设备的模型进行数值模拟。我们发现稳定性指标始终由相应的 Hellinger 距离从上方限制,这可以作为指定的容差水平。这些结果强调了可靠量子计算设备的重要性及其对稳定量子计算的影响。索引术语 — 设备可靠性、程序稳定性、时空非平稳性、时变量子噪声
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
量子比特和腔之间的色散相互作用在电路和腔量子电动力学中无处不在。它描述了一个量子模式响应另一个量子模式的激发而发生的频率偏移,并且在封闭系统中必然是双向的,即互易的。在这里,我们展示了一项关于 transmon 量子比特和超导腔之间非互易色散型相互作用的实验研究,这种相互作用源于与具有破坏时间反转对称性的耗散中间模式的共同耦合。我们通过原位调整铁氧体元件的磁场偏置来表征不同程度的非互易性下的量子比特腔动力学,包括不对称频率牵引和光子散粒噪声失相。我们引入了一个用于色散状态下非互易相互作用的通用主方程模型,为与中间系统无关的观察到的量子比特腔动力学提供了紧凑的描述。我们的结果提供了一个超越非厄米汉密尔顿量和级联系统典型范式的量子非互易现象的例子。
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。