我很高兴推出 Mike Wiegers 电气与计算机工程系的年度杂志《Uplink》2022 年夏季版!这是充满趣味的一年,我们继续适应疫情环境下高等教育的新常态。我们恢复了所有课程的全程面授教学,同时还录制了许多因学生缺课而导致的讲座。尽管我们的入学人数继续略有下降,但我们也对今年秋季新生人数的积极指标感到非常鼓舞。虽然我们在过去一年中有很多亮点,但其中最大的三个是 1) 我们的 Wildcat Wind Power 团队在全国比赛中获得第一名;2) 我们的第一批生物医学工程班于今年春天毕业;3) Tong 家族生物医学教育与创新实验室的落成。
功率。• 包括 24 端口数据中心型号,适用于城域部署。• 提供四个双模(GbE/10GbE)小型可插拔收发器(SFP/SFP+)上行链路端口和两个 40GbE QSFP+ 端口。• 上行链路端口可配置为虚拟机箱接口,并通过标准 10GbE/40GbE 光纤接口连接(40GbE 上行链路端口默认预配置为虚拟机箱端口)。• 提供全面的第 2 层功能,包括 RIP 和静态路由。• 紧凑的 13.8 英寸深 1 U 外形支持灵活的部署选项。• 易于管理的解决方案包括集中式软件升级。• 支持与所有其他瞻博网络固定配置瞻博网络 EX 系列以太网交换机使用的相同的一致的模块化瞻博网络 Junos 操作系统控制平面功能实现。 • 通过增强功能许可证(需要可选许可证)支持第 3 层(OSPF v2、IGMP v1/v2/v3、PIM、VRRP、BFD、虚拟路由器)。 • 支持 IPv6 管理,包括邻居发现、无状态自动配置、telnet、SSH、DNS、系统日志、NTP、ping、traceroute、ACL、CoS 静态路由和 RIPng。 • 通过增强功能许可证支持 IPv6 路由功能(OSPFv3、单播虚拟路由器支持、VRRPv6、PIM、MLDv1/v2)。 • 通过可选高级功能许可证支持边界网关协议 (BGP)、多协议 BGP (MBGP) 和中间系统到中间系统 (IS-IS)。 • 提供节能以太网 (EEE) 功能。
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。
– 第 6 版通过纠正 O&M、测试支持软件和网络关键消息记录功能的异常来改进 WAAS;部署于 2021 年 3 月完成 – 第 7 版将 GEO 7 集成到 WAAS 中,并在地面上行链路站 (GUS) 集成了新的信号发生器,包括在旧 GUS 站点进行改造。• 第 4B 阶段(22-31 财年)
5G 是蜂窝网络的第五代技术标准。它有三个主要应用需求,即增强移动宽带 (EMBB)、大规模机器类型通信 (MMTC) 和超可靠低延迟通信 (URLLC)。URLLC 是一项非常具有挑战性的需求,具有严格的可靠性和延迟要求。到 2022 年,它已得到高度规范,5G 供应商将在不久的将来开始实现基本的 URLLC 功能。本论文的动机是找到方法来测量 5G 独立 (SA) 网络在关键 URLLC 性能指标上的表现,分析和可视化这些测量结果,找出某些网络行为的原因,并估计不同的 URLLC 功能在实施时会产生什么样的影响。此外,另一个动机是找到一种方法来检测数据包丢失及其背后的原因,因为数据包丢失会严重损害可靠性,在部署 URLLC 功能之前应将其最小化。为了测量 5G SA 网络的性能,确定了四种不同类型的测试用例,其中生成了 URLLC 类型的网络流量。在 5G 小区的良好覆盖和不良覆盖下进行静态测试,在连接到同一 5G 小区时从良好覆盖移动到不良覆盖进行移动性测试,以及在切换测试中更改 5G 小区。所有测试均在 5G 现场验证环境中完成,包括下行链路和上行链路。对于下行链路,小区内的覆盖和移动性对单向延迟没有显著影响。这主要是因为不需要数据包重新传输,否则会增加延迟。这对于移动 URLLC 用例(例如车对万物通信 (V2X))尤其有前景。上行链路表现要弱得多,主要是因为上行链路资源调度和数据包重传。切换对于下行链路和上行链路都是有问题的,因为小区变化导致延迟短暂但大幅增加。测量中的所有数据包丢失都发生在上行链路传输中,本论文包括一个案例研究,其中导致数据包丢失的不同潜在因素被一致消除。最后,数据包丢失的原因指向用于测试的 5G 芯片组。
6.2.9 Bluetooth Location Only Packet-0x0B .................................................................. 48 6.2.10 Positioning Timeout and Error Code Packet-0x0D ............................................... 50 6.3 Downlink Packet, FPort=5 .............................................................................................. 50 6.3.1 Setting the SOS Mode -0x80 ............................................................................... 51 6.3.2 Setting the Uplink Interval -0x81 .......................................................................... 51 6.3.3 Open the buzzer -0x82 ........................................................................................ 51 6.3.4 Setting the Work Mode -0x83 ............................................................................... 52 6.3.5 Setting the Work Mode -0x84 ............................................................................... 52 6.3.6 Request Location -0x85 ....................................................................................... 55 6.3.7 Setting Positioning strategy -0x86 ........................................................................ 55 6.3.8 Request Event Parameters -0x87 ........................................................................ 55 6.3.9 Request Device Status Packet -0x88 ................................................................... 56 6.3.10 Reboot Device -0x89 ........................................................................................... 56 6.3.11 Enable Temperature and Light Sensor -0x8C .............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................FAQ ......................................................................................................................................... 58
滑铁卢大学量子计算研究所 (IQC) 的 THOMAS JENNEWEIN 成功演示了地面发射器与飞机上的接收器有效载荷之间的量子密钥分发 (QKD)。尽管德国和中国的研究人员之前曾使用飞机上的量子发射器和系留低空气球进行过 QKD 实验,但该团队首次演示了 QKD 上行链路到机载量子接收器。
A 4 x 1/10/25GBE SFP28和1 x 100GBE QSFP28扩展模块。EX4400开关包括两个专用的100GBE端口,以支持虚拟机箱连接,可以重新配置以用作上行链路连接的以太网端口。100GBE端口还可以接受40GBE光学元件用于虚拟机箱连接或上行链路连接。ex4400开关还包括高可用性(HA)功能,例如冗余,可互换的电源以及可更换的风扇,以确保最大的正常运行时间。此外,启用POE- EX4400开关模型提供标准 - 基于802.3AF/AT/BT(POE/POE+/POE ++),用于在任何访问端口上输送高达90瓦。可以将EX4400开关配置为传递快速的POE功能,使开关能够在将电源应用于开关的几秒钟内为连接的POE设备传递POE功率。此外,即使开关正在重新启动,即使在重新启动开关时,EX4400开关支持永久POE,即使在连接的POE驱动的设备(PDS)中为连接的POE驱动设备(PDS)提供了不间断的POE。
洛克希德·马丁公司给这个团队下达了以下指令:“ExPO(行星海洋探索)系统(客户)计划在未来探索木卫二的海底海洋。”这是一项 A 阶段研究,旨在评估自主海底任务的可行性。这项研究将模拟团队预计将面临的一些关键电信挑战。这次探索任务将面临光时通信挑战、协调深空资产挑战和水下挑战。目前没有现有的导航辅助设备。唯一可用的资源将是轨道中继卫星,允许在车辆浮出水面时在规定的时间进行定期数据传输。除了在地面站和车辆之间中继上行/下行数据外,该轨道器没有其他功能。“提供早期能力的演示,为未来的木卫二探索任务做准备。本次演示将以地球为基础,并将成为外星飞行器操作概念的技术演示。构建一个探索 AUV(自主水下航行器),以在静止的水体中搜索、识别和报告多个感兴趣的物体。报告水体中已识别物体的相对位置和每个物体的下行图像数据。轨道中继卫星将允许有限的数据传输。本次演示仅允许 3 个上行/下行窗口,每个窗口持续时间为 5 分钟。这些窗口将在任务执行开始时、任务执行 20 分钟后和任务执行 40 分钟后出现。您将无法根据当前下行窗口的数据上传数据。从设置、执行到拆卸的任务操作必须在 90 分钟内完成,执行时间为 60 分钟。”解决这个设计问题将增强洛克希德马丁公司对自主水下航行器的知识体系,特别是此类航行器在复杂水下环境中航行的能力。该团队需要以 5000 美元的预算设计和创新这个问题。