垂直腔体发射激光器(VCSEL)是高性能计算系统,数据中心和其他短距离光学网络中高速和功率短得分光学互连(OIS)的首选光源。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络和光网络中,需要在温度范围更大的温度范围内运行,例如从 - 40到125°C。VCSEL是OI温度最敏感的组件,并且成本和功率效率所需的未冷却/未加热的操作需要降低温度依赖性的VCSEL,在温度范围更大的情况下运行。VCSER性能的温度依赖性源于光谱和共振波长偏移之间的光学增益和不匹配的变化。减轻这些效果的方法包括使用具有适当增益式失调的VCSEL和增益工程,以扩大光学增益频谱。本文研究了在大温度范围内优化运行的850 nm VCSEL。关键研究包括阈值 - 旧电流与性能参数(纸张A)的相关性和chire QW VCSels的设计,以稳定跨温度(Pa-per)。洞察设计为极端环境设计强大的VCSEL。
抽象的脑启发的计算概念(如人工神经网络)已成为古典von Neumann计算机体系结构的有希望的替代品。光子神经网络针对神经元,网络连接和潜在学习光子底物的实现。在这里,我们通过高质量的垂直腔表面发射激光器(VCSELS)的阵列报告了快速和节能光子神经元的纳米光子硬件平台的开发。开发的5×5 VCSEL阵列通过均匀制造以及对激光波长的个人控制,提供了高光学注入锁定效率。注射锁定对于基于VCSEL的光子神经元中信息的可靠处理至关重要,我们通过注入锁定测量值和电流诱导的光谱微调来证明VCSEL阵列的适用性。我们发现我们的研究阵列很容易被调整为所需的光谱均匀性,因此表明基于我们技术的VCSEL阵列可以作为下一代光子神经网络的高能节能和超快速的光子神经元。与完全平行的光子网络相结合,我们的基材有望达到10 s GHz带宽的超快速操作,与其他平台相比,基于激光器的单个非线性转换将仅消耗大约100 fcsel,这是高度竞争性的。
iPhone X 中引入的 Face ID 系统是智能手机中第一个基于结构化光的系统,被一些人认为是 Apple 近年来最大的创新。目前,14.6% 的智能手机配备前置 3D 智能手机传感模块,消费级 3D 成像模块代表着一个价值 31 亿美元的产业。iPhone X 也是刘海屏的早期先驱,通过使用前置摄像头的切口,可以实现从上到下的显示屏。iPhone 11 和 12 基本保留了 iPhone X 的前置摄像头配置,但 iPhone 13 采用了更紧凑的系统,使刘海屏缩小了约 33%。这项全面的逆向成本研究旨在深入了解 iPhone 13 中 Face ID 模块的技术数据、制造成本和售价。我们将系统分为八个部分:模块组件、NIR CMOS 图像传感器、衍射光学元件、点投影仪 VCSEL、泛光照明器 VCSEL、VCSEL 驱动器和两个镜头模块。每个部件都经过详细的物理分析,例如光学和电子显微镜、去处理、横截面分析和能量色散 X 射线光谱,以确定所涉及的技术和制造工艺。然后,我们计算每个制造步骤的成本,并列出分项制造和物料成本。然后使用这些数据计算总成本并估算 Face ID 模块的销售价格。按照苹果的惯常策略,新系统保留了许多不变的东西,同时逐步改进了一些
简介。对非经典硬件进行脑力启发的计算的研究已在统计中引起了人们的关注。光子平台由于可能实现高带宽,能源效率以及对光学的内在平行性1-3的可能性的可能性而表现出巨大的潜力。在我们的方法中,我们将衍射耦合(DC)1,3 - 6的概念与垂直腔表面发射激光器(VCSELS)结合在一起。DC提供了并行性,并具有高能实施神经网(NNS)的潜力。使用DC的实验实现包括组合的光电模拟计算4,衍射深NNS 3、5,相干VCSEL NNS 1和储层计算(RC)6。vcsels用于多样化的实验实现,用于神经启发的信息处理,最近出现了1、7 - 11。vc- sels可以用作光学深NN体系结构1的节点或RC实现9 - 11中的单个神经元的尖峰行为7。RC 12 - 14的概念简单性允许实施具有当前或近期技术的大规模光子NN,并是研究涉及进一步优化的更复杂方案的理想跳板。许多光子RC实现基于长外部腔体内的时间多头型的高维度15。在这些方法中,提高网络会降低处理速度。我们的方案基于外部空腔16 - 18中的DC,该腔体已证明对更多的发射器可扩展。在这里,我们提出了一种方法,该方法使用24个耦合VCSEL的网络来利用光合并行性,其中每个VCSEL都与一个储层节点相对应,从而避免了时间多路复用的速度惩罚。尽管对于单独的可寻址VCSEL,电气接触设计的局限性可防止
利用 5G 延迟优势实现的 VCSEL 应用部署可以通过使用商业化技术来遵循行业发展时钟速度而受益。[1] 根据功率输出,VCSEL 器件可以根据沉积材料厚度和结构进行大致分类。[2] 本研究量化了与参考金属化膜铝最相关的双层结构特征,以便有效使用。它基于这些发现探索了成功使用常见金属氧化物绝缘体 (SiO 2 / Al 2 O 3 ) 双层处理所需的多元优化,各向同性溅射沉积厚度为 100nm 至 250nm。提出了一个表征关键变量的模型。此外,它还介绍了一种新的高温双层工艺,使用负像抗蚀剂,能够在高温绝缘体沉积期间保持稳定性。本研究确定了制造成功双层的尺寸目标,用于溅射绝缘体,适用于工艺优化,以促进不断发展的 III-V 应用。介绍
HDML:高密度多层 TF:薄膜 HD:高密度 RF:射频 VCSEL:垂直腔面发射激光器 SiP:系统级封装 SMD:表面贴装器件 RDL:重分布层 TSV:硅通孔 MEMS:微机电系统 3D AM:3D 增材制造
VCSELs and ToF Modules for 3D Sensing 用于三维传感的VCSEL和ToF模块 Xiaochi Chen 陈晓迟 General Manager, Vertilite Co., Ltd 总经理,常州纵慧芯光半导体科技有限公司 Application of Compound Semiconduc- tor in Millimeter Wave Communication 化合物半导体的毫米波通信应用 Chunjiang Li 李春江 Vice General Manager, Chengdu HiWafer Semiconductor Co., Ltd. 副总经理,成都海威华芯科技有限公司 NAURA Solutions for Si Epitaxy and SiC Growth Applied for Power Devices NAURA 的Si外延和SiC材料在功率器件领域的 解决方案 Boyu Dong 董博宇 Vice president&CVD Business Unit General Manager, Beijing NAURA Microelectronics Equipment Co.,Ltd 副总裁兼 CVD 事业部总经理,北京北方华创微 电子装备有限公司 Advanced Plasma Processing Solutions for High Performance VCSELs and EELs: Feature Etching and Thin Film Deposi- tion. Enabling Cost Down Per Wafer and Critical Device Performance 先进等离子加工技术于高性能VCSEL和EEL的 解决方案:特征蚀刻和薄膜沉积。降低晶圆成 本及关键设备性能
作为市场中增强现实设备(例如智能手机和耳机)在市场上的生命力,多用户AR场景将变得更加普遍。共同关联的用户将希望共享连贯和同步的AR体验,但这与当前方法令人惊讶。为了响应,我们开发了模式TractTrack,这是一种新颖的跟踪方法,可重新利用VCSEL驱动的深度传感器发出的结构化红外光图案,例如Apple Vision Pro,iPhone,iPad和Meta Quest 3.我们的方法不含基础架构,不需要预先注册,在无功能方面工作,并提供了其他用户设备的实时3D位置和方向。在我们的评估中 - 在六个不同的表面上进行了测试,并且设备间距离为260厘米 - 我们发现平均3D位置跟踪误差为11.02 cm,平均角度误差为6.81°。
伊贺曾担任日本研究所图书馆馆长和 P&I 微系统研究中心主任,现已退休,现为日本东京工业大学的名誉教授。他在东京工业大学获得工学博士学位,并加入东京工业大学的 P&I 实验室,最终成为一名正教授和山崎贞一讲席教授。伊贺于 1977 年首次提出了一种独特的半导体激光器,即腔面垂直于晶面的垂直腔面发射激光器 (VCSEL)。他是微光学的积极倡导者,利用梯度折射率微透镜阵列,并一直致力于实现与面发射激光器相结合的二维阵列光学装置的梦想。他是多部书籍的作者,包括《微光学基础》、《激光光学基础》、《光纤通信简介》、《半导体激光器工艺技术》和《面发射激光器》。