*Administration Site Abbreviations: LPUA – Left Outer Aspect Upper Aam, LD – Left Deltoid, LALT – Left Anterior Lateral Thigh, LVL – Left Vastus Lateralis, PO – Orally, RPUA – Right Outer Aspect Upper Arm, RD – Right Deltoid, RALT – Right Anterior Lateral Thigh, RVL – Right Vastus Lateralis, N – Intranasal
摘要 人类跑步的特点是身体与地面之间类似弹簧的相互作用,这种相互作用是由弹性肌腱实现的,弹性肌腱可以储存机械能并促进肌肉的运行条件,从而最大限度地降低代谢成本。通过实验评估两块对跑步很重要的肌肉——比目鱼肌和股外侧肌的运行条件,我们研究了肌肉做功和肌肉力量产生的生理机制。我们发现比目鱼肌在整个站立阶段不断缩短,在被认为最适合做功的条件下充当做功发生器:高力-长度潜力和高焓效率。股外侧肌促进了肌腱的能量储存,并几乎等长地收缩到接近最佳长度,从而产生了高力-长度-速度潜力,有利于经济地产生力量。这两块肌肉的有利运行条件是肌腱和肌腱单元的有效长度和速度解耦的结果,这主要是由于肌腱的柔顺性,在比目鱼肌中,肌腱旋转也起着一定作用。
6。肌肉内治疗疫苗。针对年龄≥12个月的个体的推荐给药部位是上臂的三角肌肌肉。大腿前外侧的股外侧肌肉是<12个月大的婴儿肌内疫苗接种的推荐部位。腹侧面积是肌内疫苗接种<12个月大的肌肉内疫苗接种的替代部位。但是,选择使用腹膜面积的免疫提供者必须熟悉用于识别正确地点的地标。更多信息可在澳大利亚免疫手册网站上获得https://immunisationhandhandbook.health.gov.au/contents/vaccination/vaccination-procedures/administration--vaccines#of-vaccines#
1 必要时可注射至上外侧肱三头肌区域 2 如果皮肤绷紧且皮下组织不聚拢 3 首选部位 4 一些专家建议体重低于 60 公斤的男性和女性使用 5/8 英寸针头,如果使用,皮肤必须绷紧且皮下组织不得聚拢。 5 大腿前外侧的股外侧肌也可以使用。大多数青少年和成年人需要 1 至 1.5 英寸(25-38 毫米)的针头来确保肌肉内注射。
适当的疫苗接种对于实现疫苗接种的最佳安全性和有效性至关重要。在正确的部位注射疫苗并使用适当的注射技术至关重要。注射位置太靠近手臂一侧或太低都有可能损伤腋神经或桡神经,从而导致注射过程中出现灼痛或刺痛,并可能导致神经损伤(神经病变或瘫痪)。COVID-19 疫苗应注射到上臂三角肌,特别是其中央和最厚的部分。如果三角肌区域肌肉质量不足或由于任何原因三角肌不适合,则大腿前外侧的股外侧肌可以作为替代注射部位。注射技术、针头长度和规格(直径)的选择以及注射部位都是重要的考虑因素,因为它们会影响疫苗的免疫原性和注射部位局部反应的风险。
会议 1 - 人类活动 (KNB 214) 会议主席:Karson Fitzsimons 评委:Kirsten Bott 和 Sam Leech 9:20 - 前臂拐杖长度对上肢运动学的影响 演讲者:Amanda Chen 指导老师:Ranita Manocha 博士 9:30 - 周期性负荷中断对牛皮质骨的影响 演讲者:Tudor Muresan 指导老师:Brent Edwards 博士 9:40 - pH 值的变化如何影响肌联蛋白中的应激?演讲者:Nikhil Srivalsan 主管:Walter Herzog 博士 9:50 – 胫骨加速度不是预测肌肉骨骼负荷的有效替代测量指标 演讲者:Jean Tu 主管:Brent Edwards 博士 10:00 – 脑瘫儿童剥皮肌肉纤维的主动力 演讲者:Gavin Thomas 主管:Venus Joumaa 博士和 John Holash 博士 10:10 – 整理支撑:预测马的肌腱拉伤 演讲者:Sammy Patwary 主管:John Bertram 博士 10:20 – 研究免疫荧光标记的骨骼兔腰肌肌节长度不均匀性和力量 演讲者:Dhairya Desai 主管:Walter Herzog 博士 10:30 – 延迟 3 周益生元纤维干预对脂肪的影响雌性斯普拉格道利大鼠股外侧肌的浸润 演讲者:Arman Murani 主管:Walter Herzog 博士
人们对于长期(> 6 个月)适应低碳水化合物、高脂肪 (LCHF) 饮食如何影响健康、训练有素的个体的胰岛素信号知之甚少。本研究比较了葡萄糖耐量;骨骼肌葡萄糖转运蛋白 4 (GLUT4) 和胰岛素受体底物 1 (IRS1) 含量;以及代表主要能量途径 (3-羟基乙酰辅酶 A 脱氢酶、肌酸激酶、柠檬酸合酶、乳酸脱氢酶、磷酸果糖激酶、磷酸化酶) 的肌肉酶活性,这些酶活性代表了长期遵循 LCHF 或混合常量营养素 (Mixed) 饮食的训练有素的自行车运动员。在不同的日子里,进行了 2 小时口服葡萄糖耐量测试,并从禁食参与者的股外侧肌获取肌肉样本。与混合组相比,LCHF 组的葡萄糖耐量降低,因为在整个口服葡萄糖耐量测试过程中,血浆葡萄糖浓度明显较高,血清胰岛素浓度达到峰值的时间较晚(LCHF,60 分钟;混合,30 分钟)。各组之间的全身胰岛素敏感性无统计学差异(松田指数:LCHF,8.7 ± 3.4 vs. 混合,12.9 ± 4.6;p = .08)。GLUT4(LCHF:1.13 ± 0.24;混合:1.44 ± 0.16;p = .026)和 IRS1(LCHF:0.25 ± 0.13;混合:0.46 ± 0.09;p = .016)蛋白质含量在 LCHF 肌肉中较低,但酶活性无差异。我们得出结论,习惯于 LCHF 饮食的训练有素的自行车运动员与混合饮食的对照组相比,葡萄糖耐受性降低。较低的骨骼肌 GLUT4 和 IRS1 含量可能部分解释了这一发现。这可能反映了对习惯性葡萄糖可用性降低的适应,而不是病理性胰岛素抵抗的发展。
所有电动机命令都会收敛到电动机单元(MUS),这些电动机将信号转移到肌肉纤维的机械作用中。由于离子(兴奋性/抑制性)和代谢性(神经调节)输入的组合,此过程是高度非线性的。神经调节输入有助于树突持续的内向电流,这引入了MU放电模式中的非线性,并为运动命令的结构提供了见解。在这里,我们研究了神经调节的相对贡献和抑制模式,以最大70%的收缩力调节人MU排出模式。利用从三种人体肌肉(胫骨前 - TA,ta和巨大的外侧和内膜)鉴定出的MU排出模式,我们表明,随着收缩力增加,发作偏移率滞后率(ΔF)增加了升级的MU放电模式,而s升则增加了线性,并较低。在后续实验中,我们证明了增加δF的观察结果和更线性的上升MU放电模式,即使在收缩持续时间和力率增加时,也可以保持更大的收缩力。然后,我们使用在硅运动神经池中高度逼真的逆转ta Mu放电模式来证实人类记录中推断出的生理机制。我们证明了一个严格的限制性解决方案空间,通过这种空间,只有通过增加的神经调节和更相互的互惠来重新创建收缩力引起的实验获得的MU放电模式的变化(即推扣)抑制模式。总而言之,我们的实验和计算数据表明,神经调节和抑制模式的形状是独特的,以产生放电模式,这些模式支持力在大部分运动池募集范围内增加。